Accurate cotton diseases and pests detection in complex background based on an improved YOLOX model

黄萎病 蜘蛛螨 枯萎病 目标检测 计算机科学 软件 可靠性(半导体) 人工智能 农业工程 模式识别(心理学) 生物 农学 有害生物分析 园艺 工程类 功率(物理) 程序设计语言 物理 量子力学
作者
Yuanjia Zhang,Benxue Ma,Yating Hu,Cong Li,Yujie Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:203: 107484-107484 被引量:51
标识
DOI:10.1016/j.compag.2022.107484
摘要

Cotton diseases and pests are essential factors affecting the quality and yield of cotton in agricultural production. To meet the needs of intelligent agriculture development and solve the problems of low efficiency and poor reliability of cotton diseases and pests detection, this study proposed a real-time high-performance detection model based on improved YOLOX. The model introduced Efficient Channel Attention (ECA), hard-Swish activation function, and Focal Loss function into YOLOX, which improved the ability of the model to extract image features, solved the problem of sample imbalance, improved the detection speed and accuracy, and enhanced the detection effect of cotton diseases and pests. A total of 5760 manually labeled cotton diseases and pests images (including five kinds of red leaf blight, verticillium wilt, cotton spider mite damage, double-spotted leaf beetle damage, and brown spot disease) were used to fine-tune and test the model. The mean Average Precision (mAP) of cotton diseases and pests detection reached 94.60%, the precision was 94.04%, the F1-score was 0.90, and the FPS was 74.21. Furthermore, the results were compared with five classical object detection algorithms (Faster R-CNN, SSD, YOLOv3, YOLOv4, and YOLOv5). The comparative results showed that the mAP of the improved model was 11.50%, 21.17%, 9.34%, 10.22%, and 8.33% higher than the other five algorithms, and the detection speed can meet the real-time requirements. Finally, a cotton diseases and pests detection software was designed and developed based on the improved model, deployed on the smartphone to complete the real-time detection of cotton diseases and pests in the field environment. The improved model can effectively detect the infected area of cotton leaves in the field and provide theoretical reference and technical support for controlling cotton diseases and pests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hohokuz完成签到,获得积分10
刚刚
刚刚
CC完成签到,获得积分10
1秒前
善学以致用应助王家腾采纳,获得10
1秒前
1秒前
在水一方应助花生采纳,获得10
1秒前
su完成签到,获得积分10
2秒前
归尘应助善良的剑通采纳,获得100
3秒前
3秒前
3秒前
落叶解三秋完成签到,获得积分10
3秒前
佳佳应助hohokuz采纳,获得20
4秒前
耶啵发布了新的文献求助30
4秒前
故意的怜晴完成签到 ,获得积分10
4秒前
4秒前
4秒前
Tireastani应助Silver采纳,获得10
4秒前
Muller完成签到,获得积分10
5秒前
maizhan完成签到,获得积分10
5秒前
文龙发布了新的文献求助10
6秒前
传奇3应助xueerbx采纳,获得10
6秒前
6秒前
李白白白完成签到,获得积分10
7秒前
璐璇完成签到,获得积分10
7秒前
乌云乌云快走开完成签到,获得积分10
7秒前
韩雨桐完成签到,获得积分10
8秒前
十七完成签到 ,获得积分10
8秒前
tanc发布了新的文献求助10
8秒前
花痴的电灯泡完成签到,获得积分10
8秒前
bittersweety完成签到,获得积分10
8秒前
蓝冰完成签到,获得积分10
8秒前
赘婿应助花生采纳,获得10
8秒前
如意枫叶发布了新的文献求助10
9秒前
9秒前
张步完成签到 ,获得积分10
9秒前
rayzhanghl完成签到,获得积分10
9秒前
奋斗老鼠发布了新的文献求助10
10秒前
10秒前
子非我发布了新的文献求助10
10秒前
小程同学发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582