清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Accurate cotton diseases and pests detection in complex background based on an improved YOLOX model

黄萎病 蜘蛛螨 枯萎病 目标检测 计算机科学 软件 可靠性(半导体) 人工智能 农业工程 模式识别(心理学) 生物 农学 有害生物分析 园艺 工程类 功率(物理) 物理 量子力学 程序设计语言
作者
Yuanjia Zhang,Benxue Ma,Yating Hu,Cong Li,Yujie Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:203: 107484-107484 被引量:51
标识
DOI:10.1016/j.compag.2022.107484
摘要

Cotton diseases and pests are essential factors affecting the quality and yield of cotton in agricultural production. To meet the needs of intelligent agriculture development and solve the problems of low efficiency and poor reliability of cotton diseases and pests detection, this study proposed a real-time high-performance detection model based on improved YOLOX. The model introduced Efficient Channel Attention (ECA), hard-Swish activation function, and Focal Loss function into YOLOX, which improved the ability of the model to extract image features, solved the problem of sample imbalance, improved the detection speed and accuracy, and enhanced the detection effect of cotton diseases and pests. A total of 5760 manually labeled cotton diseases and pests images (including five kinds of red leaf blight, verticillium wilt, cotton spider mite damage, double-spotted leaf beetle damage, and brown spot disease) were used to fine-tune and test the model. The mean Average Precision (mAP) of cotton diseases and pests detection reached 94.60%, the precision was 94.04%, the F1-score was 0.90, and the FPS was 74.21. Furthermore, the results were compared with five classical object detection algorithms (Faster R-CNN, SSD, YOLOv3, YOLOv4, and YOLOv5). The comparative results showed that the mAP of the improved model was 11.50%, 21.17%, 9.34%, 10.22%, and 8.33% higher than the other five algorithms, and the detection speed can meet the real-time requirements. Finally, a cotton diseases and pests detection software was designed and developed based on the improved model, deployed on the smartphone to complete the real-time detection of cotton diseases and pests in the field environment. The improved model can effectively detect the infected area of cotton leaves in the field and provide theoretical reference and technical support for controlling cotton diseases and pests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
8秒前
红茸茸羊完成签到 ,获得积分0
59秒前
饭团不吃鱼完成签到,获得积分10
1分钟前
李健应助WEN采纳,获得10
1分钟前
开放青旋应助001采纳,获得20
1分钟前
mzhang2完成签到 ,获得积分10
1分钟前
勤奋完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
脑洞疼应助Developing_human采纳,获得10
1分钟前
minnie完成签到 ,获得积分10
1分钟前
2分钟前
DocM完成签到 ,获得积分10
2分钟前
miki完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
建建发布了新的文献求助10
2分钟前
点点完成签到 ,获得积分10
2分钟前
2分钟前
酷酷乐瑶发布了新的文献求助10
2分钟前
小鱼女侠完成签到 ,获得积分10
2分钟前
小钥匙完成签到 ,获得积分10
2分钟前
3分钟前
wood完成签到,获得积分10
3分钟前
默默完成签到 ,获得积分10
3分钟前
阿明完成签到 ,获得积分10
3分钟前
游01完成签到 ,获得积分0
3分钟前
fjmelite完成签到 ,获得积分10
3分钟前
CipherSage应助Developing_human采纳,获得10
3分钟前
Lny关闭了Lny文献求助
4分钟前
小西完成签到 ,获得积分0
4分钟前
小鱼完成签到 ,获得积分10
4分钟前
天天完成签到 ,获得积分10
4分钟前
4分钟前
kusicfack完成签到,获得积分10
4分钟前
明朗完成签到 ,获得积分0
5分钟前
踏实乌冬面完成签到,获得积分10
5分钟前
sll完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
制药人完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664623
求助须知:如何正确求助?哪些是违规求助? 4866702
关于积分的说明 15108196
捐赠科研通 4823260
什么是DOI,文献DOI怎么找? 2582164
邀请新用户注册赠送积分活动 1536238
关于科研通互助平台的介绍 1494619