已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accurate cotton diseases and pests detection in complex background based on an improved YOLOX model

黄萎病 蜘蛛螨 枯萎病 目标检测 计算机科学 软件 可靠性(半导体) 人工智能 农业工程 模式识别(心理学) 生物 农学 有害生物分析 园艺 工程类 功率(物理) 物理 量子力学 程序设计语言
作者
Yuanjia Zhang,Benxue Ma,Yating Hu,Cong Li,Yujie Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:203: 107484-107484 被引量:44
标识
DOI:10.1016/j.compag.2022.107484
摘要

Cotton diseases and pests are essential factors affecting the quality and yield of cotton in agricultural production. To meet the needs of intelligent agriculture development and solve the problems of low efficiency and poor reliability of cotton diseases and pests detection, this study proposed a real-time high-performance detection model based on improved YOLOX. The model introduced Efficient Channel Attention (ECA), hard-Swish activation function, and Focal Loss function into YOLOX, which improved the ability of the model to extract image features, solved the problem of sample imbalance, improved the detection speed and accuracy, and enhanced the detection effect of cotton diseases and pests. A total of 5760 manually labeled cotton diseases and pests images (including five kinds of red leaf blight, verticillium wilt, cotton spider mite damage, double-spotted leaf beetle damage, and brown spot disease) were used to fine-tune and test the model. The mean Average Precision (mAP) of cotton diseases and pests detection reached 94.60%, the precision was 94.04%, the F1-score was 0.90, and the FPS was 74.21. Furthermore, the results were compared with five classical object detection algorithms (Faster R-CNN, SSD, YOLOv3, YOLOv4, and YOLOv5). The comparative results showed that the mAP of the improved model was 11.50%, 21.17%, 9.34%, 10.22%, and 8.33% higher than the other five algorithms, and the detection speed can meet the real-time requirements. Finally, a cotton diseases and pests detection software was designed and developed based on the improved model, deployed on the smartphone to complete the real-time detection of cotton diseases and pests in the field environment. The improved model can effectively detect the infected area of cotton leaves in the field and provide theoretical reference and technical support for controlling cotton diseases and pests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wcy发布了新的文献求助10
2秒前
王木木完成签到 ,获得积分10
3秒前
4秒前
小蘑菇应助wcy采纳,获得10
7秒前
qingfengnai完成签到,获得积分10
8秒前
8秒前
今后应助衣襟霖采纳,获得10
8秒前
9秒前
DDD完成签到,获得积分10
9秒前
sniper111完成签到,获得积分0
9秒前
木槿发布了新的文献求助10
10秒前
10秒前
10秒前
打打应助qingfengnai采纳,获得10
11秒前
青颜发布了新的文献求助10
12秒前
13秒前
orixero应助苏苏采纳,获得10
13秒前
Ceng完成签到 ,获得积分10
15秒前
16秒前
17秒前
慕青应助lalalatiancai采纳,获得10
17秒前
小贱牛发布了新的文献求助10
18秒前
脑洞疼应助嗯很好采纳,获得10
18秒前
隋晓钰完成签到,获得积分10
19秒前
20秒前
Qunichy发布了新的文献求助10
21秒前
21秒前
彭于晏应助林稚采纳,获得30
21秒前
23秒前
luckzz完成签到 ,获得积分10
23秒前
顾矜应助科研通管家采纳,获得10
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
yar应助科研通管家采纳,获得10
24秒前
大模型应助科研通管家采纳,获得10
24秒前
领导范儿应助科研通管家采纳,获得10
25秒前
打打应助青颜采纳,获得10
25秒前
汉堡包应助科研通管家采纳,获得10
25秒前
ding应助科研通管家采纳,获得10
25秒前
yar应助科研通管家采纳,获得10
25秒前
衣襟霖完成签到,获得积分20
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477194
求助须知:如何正确求助?哪些是违规求助? 3068711
关于积分的说明 9109194
捐赠科研通 2760147
什么是DOI,文献DOI怎么找? 1514673
邀请新用户注册赠送积分活动 700431
科研通“疑难数据库(出版商)”最低求助积分说明 699509