马格农
凝聚态物理
磁化
反铁磁性
物理
铁磁性
自旋电子学
电子
材料科学
磁场
量子力学
作者
Guoyi Shi,Wang Fei,Hui Ru Tan,Shishun Zhao,Yakun Liu,Dongsheng Yang,Kyusup Lee,Yuchen Pu,Shuhan Yang,Anjan Soumyanarayanan,Hyunsoo Yang
出处
期刊:Physical review applied
[American Physical Society]
日期:2023-03-13
卷期号:19 (3)
被引量:5
标识
DOI:10.1103/physrevapplied.19.034039
摘要
Electron-mediated spin torque provides a fast and efficient method to manipulate magnetization; however, electron motion inevitably brings about the generation of Joule heat and corresponding power consumption. Magnon-mediated spin torque, without involving moving electrons, could circumvent the energy dissipation issue. In this work, we fabricate a sandwich structure of topological insulator/antiferromagnetic insulator/ferromagnet with perpendicular magnetic anisotropy. We find that the magnon current with spin angular momentum can traverse a 25-nm-thick antiferromagnetic $\mathrm{Ni}\mathrm{O}$ layer and effectively switch the perpendicular magnetization of $\mathrm{Co}\text{\ensuremath{-}}\mathrm{Fe}\text{\ensuremath{-}}\mathrm{B}$ at room temperature with a critical switching current density of 4.1 \ifmmode\times\else\texttimes\fi{} ${10}^{6}\phantom{\rule{0.2em}{0ex}}\mathrm{A}/{\mathrm{cm}}^{2}$. The magnon torque efficiency is characterized using spin-torque ferromagnetic resonance measurements to be 0.33 with a magnon diffusion length of 26.6 nm. Our work paves the way for manipulating perpendicular magnetization via magnon torques, facilitating the exploration of magnon-based spintronics with low power consumption.
科研通智能强力驱动
Strongly Powered by AbleSci AI