Which model is better in predicting the survival of laryngeal squamous cell carcinoma?: Comparison of the random survival forest based on machine learning algorithms to Cox regression: analyses based on SEER database

比例危险模型 布里氏评分 医学 随机森林 生存分析 统计 预测建模 Lasso(编程语言) 回归 回归分析 多元统计 算法 肿瘤科 人工智能 内科学 数学 计算机科学 万维网
作者
Haili Sun,Shuangshuang Wu,Shaoxiao Li,Xiaohua Jiang
出处
期刊:Medicine [Wolters Kluwer]
卷期号:102 (10): e33144-e33144 被引量:1
标识
DOI:10.1097/md.0000000000033144
摘要

Prediction of postoperative survival for laryngeal carcinoma patients is very important. This study attempts to demonstrate the utilization of the random survival forest (RSF) and Cox regression model to predict overall survival of laryngeal squamous cell carcinoma (LSCC) and compare their performance. A total of 8677 patients diagnosed with LSCC from 2004 to 2015 were obtained from surveillance, epidemiology, and end results database. Multivariate imputation by chained equations was applied to filling the missing data. Lasso regression algorithm was conducted to find potential predictors. RSF and Cox regression were used to develop the survival prediction models. Harrell's concordance index (C-index), area under the curve (AUC), Brier score, and calibration plot were used to evaluate the predictive performance of the 2 models. For 3-year survival prediction, the C-index in training set were 0.74 (0.011) and 0.84 (0.013) for Cox and RSF respectively. For 5-year survival prediction, the C-index in training set were 0.75 (0.022) and 0.80 (0.011) for Cox and RSF respectively. Similar results were found in validation set. The AUC were 0.795 for RSF and 0.715 for Cox in the training set while the AUC were 0.765 for RSF and 0.705 for Cox in the validation set. The prediction error curves for each model based on Brier score showed the RSF model had lower prediction errors both in training group and validation group. What's more, the calibration curve displayed similar results of 2 models both in training set and validation set. The performance of RSF model were better than Cox regression model. The RSF algorithms provide a relatively better alternatives to be of clinical use for estimating the survival probability of LSCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南医医发布了新的文献求助10
刚刚
yanyuqing发布了新的文献求助10
1秒前
1秒前
1秒前
有魅力书雪完成签到,获得积分10
1秒前
wangzhen发布了新的文献求助10
2秒前
泡泡完成签到,获得积分10
2秒前
Theprisoners应助大白采纳,获得20
2秒前
123完成签到,获得积分10
2秒前
hp571完成签到,获得积分10
3秒前
3秒前
一一发布了新的文献求助10
4秒前
统统闪开完成签到,获得积分10
4秒前
亭树完成签到,获得积分10
4秒前
nini发布了新的文献求助10
4秒前
5秒前
toxin37完成签到 ,获得积分10
5秒前
hp571发布了新的文献求助10
5秒前
6秒前
英俊的铭应助yanyuqing采纳,获得10
6秒前
Akim应助明理的坤采纳,获得10
6秒前
一只快乐的小比熊完成签到,获得积分10
7秒前
7秒前
打打应助clcl采纳,获得10
8秒前
统领七届完成签到,获得积分10
9秒前
9秒前
9秒前
Huobol完成签到,获得积分10
9秒前
熊二浪完成签到,获得积分10
9秒前
quanjiazhi完成签到,获得积分10
10秒前
10秒前
10秒前
万能图书馆应助杨惠子采纳,获得10
11秒前
参上完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
11秒前
11秒前
青羽发布了新的文献求助10
11秒前
elfff完成签到 ,获得积分10
11秒前
12秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009462
求助须知:如何正确求助?哪些是违规求助? 3549388
关于积分的说明 11301996
捐赠科研通 3283894
什么是DOI,文献DOI怎么找? 1810448
邀请新用户注册赠送积分活动 886287
科研通“疑难数据库(出版商)”最低求助积分说明 811316