亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Which model is better in predicting the survival of laryngeal squamous cell carcinoma?: Comparison of the random survival forest based on machine learning algorithms to Cox regression: analyses based on SEER database

比例危险模型 布里氏评分 医学 随机森林 生存分析 统计 预测建模 Lasso(编程语言) 回归 回归分析 多元统计 算法 肿瘤科 人工智能 内科学 数学 计算机科学 万维网
作者
Haili Sun,Shuangshuang Wu,Shaoxiao Li,Xiaohua Jiang
出处
期刊:Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:102 (10): e33144-e33144 被引量:1
标识
DOI:10.1097/md.0000000000033144
摘要

Prediction of postoperative survival for laryngeal carcinoma patients is very important. This study attempts to demonstrate the utilization of the random survival forest (RSF) and Cox regression model to predict overall survival of laryngeal squamous cell carcinoma (LSCC) and compare their performance. A total of 8677 patients diagnosed with LSCC from 2004 to 2015 were obtained from surveillance, epidemiology, and end results database. Multivariate imputation by chained equations was applied to filling the missing data. Lasso regression algorithm was conducted to find potential predictors. RSF and Cox regression were used to develop the survival prediction models. Harrell's concordance index (C-index), area under the curve (AUC), Brier score, and calibration plot were used to evaluate the predictive performance of the 2 models. For 3-year survival prediction, the C-index in training set were 0.74 (0.011) and 0.84 (0.013) for Cox and RSF respectively. For 5-year survival prediction, the C-index in training set were 0.75 (0.022) and 0.80 (0.011) for Cox and RSF respectively. Similar results were found in validation set. The AUC were 0.795 for RSF and 0.715 for Cox in the training set while the AUC were 0.765 for RSF and 0.705 for Cox in the validation set. The prediction error curves for each model based on Brier score showed the RSF model had lower prediction errors both in training group and validation group. What's more, the calibration curve displayed similar results of 2 models both in training set and validation set. The performance of RSF model were better than Cox regression model. The RSF algorithms provide a relatively better alternatives to be of clinical use for estimating the survival probability of LSCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助碧蓝一德采纳,获得10
4秒前
6秒前
yy发布了新的文献求助10
10秒前
14秒前
顾矜应助yy采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
16秒前
markzhang发布了新的文献求助10
17秒前
yy完成签到,获得积分10
25秒前
markzhang完成签到,获得积分10
1分钟前
1分钟前
zhouleiwang发布了新的文献求助10
1分钟前
1分钟前
2分钟前
浮曳发布了新的文献求助10
2分钟前
Sandy完成签到 ,获得积分10
2分钟前
2分钟前
雅樱发布了新的文献求助10
2分钟前
浮曳完成签到,获得积分10
3分钟前
可爱的函函应助mochi采纳,获得10
3分钟前
雅樱完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
mochi发布了新的文献求助10
5分钟前
聪明的云完成签到 ,获得积分10
5分钟前
mochi完成签到,获得积分10
5分钟前
科研通AI2S应助从容的盼晴采纳,获得10
7分钟前
拟好发布了新的文献求助30
7分钟前
8分钟前
我是老大应助科研通管家采纳,获得10
8分钟前
领导范儿应助科研通管家采纳,获得30
8分钟前
lankeren完成签到 ,获得积分10
9分钟前
大模型应助拟好采纳,获得10
9分钟前
落寞书易完成签到 ,获得积分10
9分钟前
9分钟前
拟好发布了新的文献求助10
9分钟前
CipherSage应助showrain采纳,获得10
10分钟前
10分钟前
showrain发布了新的文献求助10
10分钟前
10分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142703
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806997
捐赠科研通 2449857
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328