过电位
塔菲尔方程
双功能
析氧
电催化剂
材料科学
电解
分解水
化学
电解水
化学工程
催化作用
无机化学
电化学
电解质
物理化学
电极
生物化学
光催化
工程类
作者
Ning Pang,Yun Li,Xin Tong,Mengqiu Wang,Huiyun Shi,Dajun Wu,Dayuan Xiong,Shaohui Xu,Lianwei Wang,Lin Jiang,Paul K. Chu
标识
DOI:10.1016/j.jallcom.2023.169448
摘要
Water electrolysis is one of the most promising technologies for sustainable and clean energy production, yet the sluggish kinetics of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) hampers the commercialization. In this work, Zr-doped MoS2 @Ni3S2 (MSNF) heterogeneous nanorods as bifunctional electrocatalysts were successfully explored to boost the catalytic activity of water electrolysis. The structural characterizations demonstrate the uniform modification of Zr atoms on the basal plane of MoS2 at the heterointerface of MSNF. MSNF implanted with a Zr plasma ion fluence of 5 × 1016 ions-cm−2 (Zr500-MSNF) shows the most remarkable bifunctional electrocatalytic characteristics such as Tafel slope of 60.9 mV dec−1 and overpotential of 98 mV at 10 mA cm−2 for HER, as well as Tafel slope of 78.5 mV dec−1 and overpotential of 275 mV at 20 mA cm−2 for OER. Consistent with the structural and electrocatalytic characterizations, first-principles calculation confirms that the activated S sites in the basal plane of MoS2 upon Zr doping have more empty states in its valence orbital to favor the adsorption of hydrogen and hydroxide, thus contributing to enhanced HER and OER activity. The findings in this work reveal a facile strategy to design high-performance and low-cost bifunctional catalysts based on two-dimensional materials for overall water splitting.
科研通智能强力驱动
Strongly Powered by AbleSci AI