Automated Prediction of Early Recurrence in Advanced Sinonasal Squamous Cell Carcinoma With Deep Learning and Multi-parametric MRI-based Radiomics Nomogram

医学 列线图 无线电技术 队列 有效扩散系数 逻辑回归 放射科 Lasso(编程语言) 阶段(地层学) 磁共振成像 核医学 人工智能 肿瘤科 内科学 计算机科学 生物 万维网 古生物学
作者
Mengyan Lin,Naier Lin,Sihui Yu,Yan Sha,Yan Zeng,Aie Liu,Yue Niu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (10): 2201-2211 被引量:8
标识
DOI:10.1016/j.acra.2022.11.013
摘要

Preoperative prediction of the recurrence risk in patients with advanced sinonasal squamous cell carcinoma (SNSCC) is critical for individualized treatment. To evaluate the predictive ability of radiomics signature (RS) based on deep learning and multiparametric MRI for the risk of 2-year recurrence in advanced SNSCC.Preoperative MRI datasets were retrospectively collected from 265 SNSCC patients (145 recurrences) who underwent preoperative MRI, including T2-weighted (T2W), contrast-enhanced T1-weighted (T1c) sequences and diffusion-weighted (DW). All patients were divided into 165 training cohort and 70 test cohort. A deep learning segmentation model based on VB-Net was used to segment regions of interest (ROIs) for preoperative MRI and radiomics features were extracted from automatically segmented ROIs. Least absolute shrinkage and selection operator (LASSO) and logistic regression (LR) were applied for feature selection and radiomics score construction. Combined with meaningful clinicopathological predictors, a nomogram was developed and its performance was evaluated. In addition, X-title software was used to divide patients into high-risk or low-risk early relapse (ER) subgroups. Recurrence-free survival probability (RFS) was assessed for each subgroup.The radiomics score, T stage, histological grade and Ki-67 predictors were independent predictors. The segmentation models of T2WI, T1c, and apparent diffusion coefficient (ADC) sequences achieved Dice coefficients of 0.720, 0.727, and 0.756, respectively, in the test cohort. RS-T2, RS-T1c and RS-ADC were derived from single-parameter MRI. RS-Combined (combined with T2WI, T1c, and ADC features) was derived from multiparametric MRI and reached area under curve (AUC) and accuracy of 0.854 (0.749-0.927) and 74.3% (0.624-0.840), respectively, in the test cohort. The calibration curve and decision curve analysis (DCA) illustrate its value in clinical practice. Kaplan-Meier analysis showed that the 2-year RFS rate for low-risk patients was significantly greater than that for high-risk patients in both the training and testing cohorts (p < 0.001).Automated nomograms based on multi-sequence MRI help to predict ER in SNSCC patients preoperatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqx完成签到 ,获得积分10
2秒前
3秒前
JUNJIU发布了新的文献求助20
4秒前
666应助登登采纳,获得10
4秒前
一梦丶初醒完成签到 ,获得积分10
5秒前
5秒前
Lucas应助小猫采纳,获得10
6秒前
6秒前
根号3完成签到,获得积分10
7秒前
zwjy完成签到,获得积分10
8秒前
9秒前
要减肥的chao完成签到,获得积分10
11秒前
英俊的铭应助ljx采纳,获得10
13秒前
15秒前
15秒前
长乐完成签到,获得积分10
16秒前
牛牛眉目发布了新的文献求助10
16秒前
大熊完成签到 ,获得积分10
18秒前
19秒前
zk200107发布了新的文献求助10
19秒前
逝月完成签到,获得积分10
22秒前
田様应助杜兰特采纳,获得10
22秒前
22秒前
单身的钧完成签到,获得积分10
24秒前
竹筏过海应助执着的绿柏采纳,获得30
24秒前
jyy应助调皮的浩天采纳,获得10
25秒前
jyy应助调皮的浩天采纳,获得10
25秒前
26秒前
26秒前
26秒前
ljx发布了新的文献求助10
26秒前
CipherSage应助DAZIDAZI02采纳,获得10
28秒前
bibabiu发布了新的文献求助10
30秒前
下课了吧完成签到 ,获得积分10
31秒前
634301059完成签到 ,获得积分10
31秒前
666完成签到,获得积分10
31秒前
31秒前
32秒前
33秒前
shencan完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361