已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Prediction of Early Recurrence in Advanced Sinonasal Squamous Cell Carcinoma With Deep Learning and Multi-parametric MRI-based Radiomics Nomogram

医学 列线图 无线电技术 队列 有效扩散系数 逻辑回归 放射科 Lasso(编程语言) 阶段(地层学) 磁共振成像 核医学 人工智能 肿瘤科 内科学 计算机科学 生物 万维网 古生物学
作者
Mengyan Lin,Naier Lin,Sihui Yu,Yan Sha,Yan Zeng,Aie Liu,Yue Niu
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (10): 2201-2211 被引量:5
标识
DOI:10.1016/j.acra.2022.11.013
摘要

Preoperative prediction of the recurrence risk in patients with advanced sinonasal squamous cell carcinoma (SNSCC) is critical for individualized treatment. To evaluate the predictive ability of radiomics signature (RS) based on deep learning and multiparametric MRI for the risk of 2-year recurrence in advanced SNSCC.Preoperative MRI datasets were retrospectively collected from 265 SNSCC patients (145 recurrences) who underwent preoperative MRI, including T2-weighted (T2W), contrast-enhanced T1-weighted (T1c) sequences and diffusion-weighted (DW). All patients were divided into 165 training cohort and 70 test cohort. A deep learning segmentation model based on VB-Net was used to segment regions of interest (ROIs) for preoperative MRI and radiomics features were extracted from automatically segmented ROIs. Least absolute shrinkage and selection operator (LASSO) and logistic regression (LR) were applied for feature selection and radiomics score construction. Combined with meaningful clinicopathological predictors, a nomogram was developed and its performance was evaluated. In addition, X-title software was used to divide patients into high-risk or low-risk early relapse (ER) subgroups. Recurrence-free survival probability (RFS) was assessed for each subgroup.The radiomics score, T stage, histological grade and Ki-67 predictors were independent predictors. The segmentation models of T2WI, T1c, and apparent diffusion coefficient (ADC) sequences achieved Dice coefficients of 0.720, 0.727, and 0.756, respectively, in the test cohort. RS-T2, RS-T1c and RS-ADC were derived from single-parameter MRI. RS-Combined (combined with T2WI, T1c, and ADC features) was derived from multiparametric MRI and reached area under curve (AUC) and accuracy of 0.854 (0.749-0.927) and 74.3% (0.624-0.840), respectively, in the test cohort. The calibration curve and decision curve analysis (DCA) illustrate its value in clinical practice. Kaplan-Meier analysis showed that the 2-year RFS rate for low-risk patients was significantly greater than that for high-risk patients in both the training and testing cohorts (p < 0.001).Automated nomograms based on multi-sequence MRI help to predict ER in SNSCC patients preoperatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纳米粒子发布了新的文献求助10
刚刚
1107任务报告完成签到,获得积分10
1秒前
调研昵称发布了新的文献求助10
4秒前
轻松的小海豚完成签到 ,获得积分10
4秒前
居居子完成签到,获得积分10
5秒前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
7秒前
orixero应助Aliaoovo采纳,获得10
7秒前
高数数完成签到,获得积分10
8秒前
舒心豪英完成签到 ,获得积分10
9秒前
9秒前
xiaoxioayixi完成签到 ,获得积分10
12秒前
科研通AI2S应助kamenridersaber采纳,获得10
12秒前
123发布了新的文献求助10
15秒前
ZJ完成签到,获得积分10
17秒前
香蕉觅云应助zhong采纳,获得10
18秒前
彭于晏应助等待的剑身采纳,获得10
19秒前
nenoaowu应助科研通管家采纳,获得30
24秒前
m1nt完成签到,获得积分10
25秒前
欣喜的代容完成签到 ,获得积分10
25秒前
terence完成签到,获得积分10
26秒前
奋斗的伟宸完成签到,获得积分10
27秒前
等待的剑身完成签到,获得积分10
29秒前
思源应助zhong采纳,获得30
33秒前
fqpang完成签到,获得积分10
33秒前
小叶完成签到 ,获得积分10
34秒前
38秒前
花无双完成签到,获得积分0
39秒前
40秒前
43秒前
Calyn完成签到 ,获得积分10
43秒前
LL关注了科研通微信公众号
45秒前
气泡水完成签到 ,获得积分10
45秒前
乔治哇完成签到 ,获得积分10
49秒前
polarisblue发布了新的文献求助10
51秒前
斯文的苡完成签到,获得积分10
51秒前
无花果应助快乐科研梁采纳,获得10
52秒前
昨夜星辰メ完成签到 ,获得积分0
52秒前
53秒前
火星上云朵完成签到 ,获得积分10
53秒前
笨笨十三完成签到 ,获得积分10
55秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162173
求助须知:如何正确求助?哪些是违规求助? 2813256
关于积分的说明 7899394
捐赠科研通 2472477
什么是DOI,文献DOI怎么找? 1316444
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142