Automated Prediction of Early Recurrence in Advanced Sinonasal Squamous Cell Carcinoma With Deep Learning and Multi-parametric MRI-based Radiomics Nomogram

医学 列线图 无线电技术 队列 有效扩散系数 逻辑回归 放射科 Lasso(编程语言) 阶段(地层学) 磁共振成像 核医学 人工智能 肿瘤科 内科学 计算机科学 古生物学 万维网 生物
作者
Mengyan Lin,Naier Lin,Sihui Yu,Yan Sha,Yan Zeng,Aie Liu,Yue Niu
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (10): 2201-2211 被引量:6
标识
DOI:10.1016/j.acra.2022.11.013
摘要

Preoperative prediction of the recurrence risk in patients with advanced sinonasal squamous cell carcinoma (SNSCC) is critical for individualized treatment. To evaluate the predictive ability of radiomics signature (RS) based on deep learning and multiparametric MRI for the risk of 2-year recurrence in advanced SNSCC.Preoperative MRI datasets were retrospectively collected from 265 SNSCC patients (145 recurrences) who underwent preoperative MRI, including T2-weighted (T2W), contrast-enhanced T1-weighted (T1c) sequences and diffusion-weighted (DW). All patients were divided into 165 training cohort and 70 test cohort. A deep learning segmentation model based on VB-Net was used to segment regions of interest (ROIs) for preoperative MRI and radiomics features were extracted from automatically segmented ROIs. Least absolute shrinkage and selection operator (LASSO) and logistic regression (LR) were applied for feature selection and radiomics score construction. Combined with meaningful clinicopathological predictors, a nomogram was developed and its performance was evaluated. In addition, X-title software was used to divide patients into high-risk or low-risk early relapse (ER) subgroups. Recurrence-free survival probability (RFS) was assessed for each subgroup.The radiomics score, T stage, histological grade and Ki-67 predictors were independent predictors. The segmentation models of T2WI, T1c, and apparent diffusion coefficient (ADC) sequences achieved Dice coefficients of 0.720, 0.727, and 0.756, respectively, in the test cohort. RS-T2, RS-T1c and RS-ADC were derived from single-parameter MRI. RS-Combined (combined with T2WI, T1c, and ADC features) was derived from multiparametric MRI and reached area under curve (AUC) and accuracy of 0.854 (0.749-0.927) and 74.3% (0.624-0.840), respectively, in the test cohort. The calibration curve and decision curve analysis (DCA) illustrate its value in clinical practice. Kaplan-Meier analysis showed that the 2-year RFS rate for low-risk patients was significantly greater than that for high-risk patients in both the training and testing cohorts (p < 0.001).Automated nomograms based on multi-sequence MRI help to predict ER in SNSCC patients preoperatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坚强亦丝应助游大达采纳,获得10
1秒前
@小小搬砖瑞完成签到,获得积分10
1秒前
怡然若雁发布了新的文献求助10
3秒前
coc关注了科研通微信公众号
3秒前
双双完成签到,获得积分10
3秒前
瑶625发布了新的文献求助10
3秒前
Strike完成签到,获得积分10
4秒前
调皮纸飞机完成签到,获得积分20
4秒前
董小李完成签到,获得积分10
4秒前
4秒前
研友_8yN60L完成签到,获得积分10
5秒前
zhanzhanzhan发布了新的文献求助10
5秒前
科研通AI5应助自爱悠然采纳,获得10
5秒前
5秒前
Accept应助胡枝子采纳,获得30
5秒前
Strike发布了新的文献求助10
6秒前
Rsoup完成签到,获得积分10
6秒前
7秒前
zz发布了新的文献求助10
7秒前
sfzz完成签到,获得积分10
7秒前
7秒前
如履平川完成签到 ,获得积分10
7秒前
大个应助阳光海云采纳,获得50
7秒前
7秒前
新青年完成签到,获得积分0
7秒前
7秒前
现代的又柔应助研友_8yN60L采纳,获得10
8秒前
8秒前
李健应助傲娇的云朵采纳,获得10
8秒前
8秒前
8秒前
liudiqiu完成签到,获得积分10
8秒前
Akashi完成签到,获得积分10
8秒前
风中珩完成签到 ,获得积分10
9秒前
LIU发布了新的文献求助10
9秒前
9秒前
李知恩完成签到,获得积分10
10秒前
10秒前
EthanChan完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740