Automated Prediction of Early Recurrence in Advanced Sinonasal Squamous Cell Carcinoma With Deep Learning and Multi-parametric MRI-based Radiomics Nomogram

医学 列线图 无线电技术 队列 有效扩散系数 逻辑回归 放射科 Lasso(编程语言) 阶段(地层学) 磁共振成像 核医学 人工智能 肿瘤科 内科学 计算机科学 古生物学 万维网 生物
作者
Mengyan Lin,Naier Lin,Sihui Yu,Yan Sha,Yan Zeng,Aie Liu,Yue Niu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (10): 2201-2211 被引量:8
标识
DOI:10.1016/j.acra.2022.11.013
摘要

Preoperative prediction of the recurrence risk in patients with advanced sinonasal squamous cell carcinoma (SNSCC) is critical for individualized treatment. To evaluate the predictive ability of radiomics signature (RS) based on deep learning and multiparametric MRI for the risk of 2-year recurrence in advanced SNSCC.Preoperative MRI datasets were retrospectively collected from 265 SNSCC patients (145 recurrences) who underwent preoperative MRI, including T2-weighted (T2W), contrast-enhanced T1-weighted (T1c) sequences and diffusion-weighted (DW). All patients were divided into 165 training cohort and 70 test cohort. A deep learning segmentation model based on VB-Net was used to segment regions of interest (ROIs) for preoperative MRI and radiomics features were extracted from automatically segmented ROIs. Least absolute shrinkage and selection operator (LASSO) and logistic regression (LR) were applied for feature selection and radiomics score construction. Combined with meaningful clinicopathological predictors, a nomogram was developed and its performance was evaluated. In addition, X-title software was used to divide patients into high-risk or low-risk early relapse (ER) subgroups. Recurrence-free survival probability (RFS) was assessed for each subgroup.The radiomics score, T stage, histological grade and Ki-67 predictors were independent predictors. The segmentation models of T2WI, T1c, and apparent diffusion coefficient (ADC) sequences achieved Dice coefficients of 0.720, 0.727, and 0.756, respectively, in the test cohort. RS-T2, RS-T1c and RS-ADC were derived from single-parameter MRI. RS-Combined (combined with T2WI, T1c, and ADC features) was derived from multiparametric MRI and reached area under curve (AUC) and accuracy of 0.854 (0.749-0.927) and 74.3% (0.624-0.840), respectively, in the test cohort. The calibration curve and decision curve analysis (DCA) illustrate its value in clinical practice. Kaplan-Meier analysis showed that the 2-year RFS rate for low-risk patients was significantly greater than that for high-risk patients in both the training and testing cohorts (p < 0.001).Automated nomograms based on multi-sequence MRI help to predict ER in SNSCC patients preoperatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Harish完成签到,获得积分10
2秒前
涛声依旧应助一二采纳,获得10
2秒前
7秒前
吕大本事完成签到,获得积分10
11秒前
12秒前
12秒前
123lx完成签到 ,获得积分10
14秒前
星辰大海应助chen采纳,获得10
14秒前
sugar完成签到,获得积分10
15秒前
keyanbaicai发布了新的文献求助10
15秒前
15秒前
17秒前
爆米花应助林林林采纳,获得10
17秒前
Dandraine发布了新的文献求助10
17秒前
慢慢人完成签到,获得积分10
17秒前
19秒前
19秒前
温婉的惜文完成签到 ,获得积分10
22秒前
Capacition6发布了新的文献求助10
22秒前
苹果可燕发布了新的文献求助10
23秒前
Pbuitf完成签到,获得积分20
23秒前
阿莹发布了新的文献求助10
23秒前
23秒前
棉花糖发布了新的文献求助10
24秒前
慢慢人发布了新的文献求助10
24秒前
虚心幼翠完成签到,获得积分10
25秒前
25秒前
小二郎应助诚心的香水采纳,获得10
25秒前
脑洞疼应助Dandraine采纳,获得10
26秒前
zho应助keyanbaicai采纳,获得10
29秒前
拉稀摆带发布了新的文献求助10
30秒前
tangchao完成签到,获得积分10
31秒前
32秒前
wanci应助简意采纳,获得10
32秒前
33秒前
CipherSage应助棉花糖采纳,获得10
35秒前
打打应助陈述采纳,获得10
36秒前
36秒前
xupt唐僧发布了新的文献求助10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3762952
求助须知:如何正确求助?哪些是违规求助? 3307438
关于积分的说明 10139872
捐赠科研通 3022587
什么是DOI,文献DOI怎么找? 1659152
邀请新用户注册赠送积分活动 792378
科研通“疑难数据库(出版商)”最低求助积分说明 754957