Electrocatalytic hydrogen and oxygen evolution reactions: Role of two-dimensional layered materials and their composites

分解水 电催化剂 析氧 MXenes公司 过渡金属 材料科学 电解质 制氢 氮化物 纳米技术 层状双氢氧化物 电化学 催化作用 电极 化学 物理化学 图层(电子) 有机化学 光催化 生物化学
作者
K. C. Seetha Lakshmi,Balaraman Vedhanarayanan,Tsung‐Wu Lin
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:447: 142119-142119 被引量:40
标识
DOI:10.1016/j.electacta.2023.142119
摘要

Electrocatalytic hydrogen and oxygen evolution reactions (HER & OER) are the fundamental key processes of the overall water splitting towards sustainable hydrogen production. The reaction efficiency of these processes are majorly controlled by the characteristics (structure and properties) of the crucial components such as the electrocatalyst as well as the electrolyte system. In particular, the detailed investigation of the structure-property relationship of electrocatalyst along with reaction mechanism and electrokinetics supporting through computational calculations would boost the design and development of high-performance next-generation electrocatalytic systems. The electrocatalysts with higher electrical conductivity and more exposed active sites always exhibit better performance than the nonporous bulk materials. The transition-metal based 2D layered materials are highly suitable for this purpose due to their tunable interlayer spacing, edge-active sites and better electrical conductivity. In this review, the development of non-precious transition metal-based 2D layered materials including transition metal dichalcogenides, layered-double hydroxides, MXenes, and graphitic carbon nitride towards the HER & OER activities is discussed with very recent examples. The synthesis and electrocatalytic performance of these 2D layered materials and their composites are summarized along with the computational studies. Finally, the present challenges in the design of high-performance electrocatalysts together with the future perspectives are detailed in this review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心网络完成签到,获得积分10
刚刚
CC完成签到 ,获得积分10
刚刚
DG发布了新的文献求助10
刚刚
刚刚
安安发布了新的文献求助10
刚刚
刚刚
科研通AI6.1应助念一采纳,获得10
1秒前
1秒前
2秒前
111122223发布了新的文献求助30
2秒前
3秒前
yhh发布了新的文献求助10
3秒前
JamesPei应助典雅的俊驰采纳,获得10
4秒前
7秒前
游一发布了新的文献求助10
7秒前
1056720198发布了新的文献求助10
7秒前
未du发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
小豹子完成签到,获得积分10
8秒前
酷波er应助bailubailing采纳,获得20
9秒前
9秒前
你好完成签到,获得积分10
9秒前
大个应助阿静采纳,获得10
10秒前
10秒前
11秒前
12秒前
12秒前
机灵水卉发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
美亲发布了新的文献求助10
14秒前
14秒前
14秒前
大胆的飞荷完成签到,获得积分10
14秒前
17秒前
17秒前
健忘的曼青完成签到,获得积分20
17秒前
林摆摆完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735868
求助须知:如何正确求助?哪些是违规求助? 5363199
关于积分的说明 15331638
捐赠科研通 4879999
什么是DOI,文献DOI怎么找? 2622459
邀请新用户注册赠送积分活动 1571448
关于科研通互助平台的介绍 1528243