In Situ Nanostress Visualization Method to Reveal the Micromechanical Mechanism of Nanocomposites by Atomic Force Microscopy

材料科学 天然橡胶 复合材料 变形(气象学) 压力(语言学) 纳米复合材料 钢筋 变形机理 有限元法 微观结构 结构工程 语言学 工程类 哲学
作者
Xiaobin Liang,Takashi Kojima,Makiko Ito,Naoya Amino,Haonan Liu,Masataka KOISHI,K. Nakajima
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (9): 12414-12422 被引量:9
标识
DOI:10.1021/acsami.2c22971
摘要

An in situ atomic force microscopy (AFM) nanomechanical technique was used to directly visualize the micromechanical behaviors of polymer nanocomposites during compressive strain. We obtained a stress distribution image of carbon black (CB)-filled rubber at the nanoscale for the first time, and we traced the microscopic deformation behaviors of CB particles. Through this experiment, we directly revealed the microscopic reinforcement mechanisms of rubber composites. We found that CB-filled rubbers exhibited heterogeneous local microscopic deformations, which were related to the dispersion of CB particles in rubber matrices. The local stress distributions of the rubber composites showed heterogeneity, and the stresses were concentrated in the regions near the CB particles during compression. The area of stress concentration gradually expanded with increasing strain and eventually formed a stress network structure. This stress network bore most of the macroscopic stress and was considered the key reinforcement mechanism of CB-filled rubber. The stress transfer process in the rubber matrix was visualized in real space for the first time. Based on the image data from the AFM experiments, we used finite-element method (FEM) simulations to reproduce the microscopic deformation process of CB-filled rubber. The stress distribution images simulated by FEM showed heterogeneity consistent with AFM. In this study, an in situ visualization of material deformation confirmed the predictions of microscopic deformation behavior from previous theories and models; it also provided new insights into the microscopic reinforcement mechanisms of CB-filled rubber composites based on microscopic stress distribution images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
555发布了新的文献求助10
刚刚
JamesPei应助今晚吃什么采纳,获得10
刚刚
4477完成签到,获得积分10
刚刚
科研通AI2S应助liuyuxin采纳,获得10
刚刚
向日葵完成签到,获得积分10
1秒前
飞快的代天完成签到,获得积分10
1秒前
1秒前
陈乃雪完成签到,获得积分20
2秒前
2秒前
修勾发布了新的文献求助10
2秒前
科研通AI6应助云草采纳,获得10
2秒前
金zh发布了新的文献求助10
2秒前
光亮笑柳完成签到,获得积分10
2秒前
Ava应助华子采纳,获得10
3秒前
3秒前
3秒前
勤恳化蛹完成签到 ,获得积分10
4秒前
丘比特应助奇点采纳,获得10
4秒前
飞快的诗槐完成签到,获得积分10
4秒前
5秒前
CLH完成签到 ,获得积分10
6秒前
兴奋鼠标完成签到 ,获得积分10
6秒前
11发布了新的文献求助10
6秒前
6秒前
Hello~完成签到,获得积分10
6秒前
小白完成签到,获得积分20
7秒前
7秒前
8秒前
宓广缘发布了新的文献求助10
8秒前
Poyd发布了新的文献求助10
8秒前
顺利小蝴蝶完成签到,获得积分10
8秒前
march发布了新的文献求助30
8秒前
8秒前
Amber发布了新的文献求助10
9秒前
千里完成签到,获得积分10
9秒前
弗洛莉娅完成签到,获得积分10
11秒前
脑洞疼应助saudade采纳,获得10
11秒前
bkagyin应助一文字豪树采纳,获得10
11秒前
lily完成签到,获得积分10
11秒前
12秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388481
求助须知:如何正确求助?哪些是违规求助? 4510609
关于积分的说明 14035848
捐赠科研通 4421354
什么是DOI,文献DOI怎么找? 2428772
邀请新用户注册赠送积分活动 1421347
关于科研通互助平台的介绍 1400559