In Situ Nanostress Visualization Method to Reveal the Micromechanical Mechanism of Nanocomposites by Atomic Force Microscopy

材料科学 天然橡胶 复合材料 变形(气象学) 压力(语言学) 纳米复合材料 钢筋 变形机理 有限元法 微观结构 结构工程 语言学 工程类 哲学
作者
Xiaobin Liang,Takashi Kojima,Makiko Ito,Naoya Amino,Haonan Liu,Masataka KOISHI,K. Nakajima
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (9): 12414-12422 被引量:9
标识
DOI:10.1021/acsami.2c22971
摘要

An in situ atomic force microscopy (AFM) nanomechanical technique was used to directly visualize the micromechanical behaviors of polymer nanocomposites during compressive strain. We obtained a stress distribution image of carbon black (CB)-filled rubber at the nanoscale for the first time, and we traced the microscopic deformation behaviors of CB particles. Through this experiment, we directly revealed the microscopic reinforcement mechanisms of rubber composites. We found that CB-filled rubbers exhibited heterogeneous local microscopic deformations, which were related to the dispersion of CB particles in rubber matrices. The local stress distributions of the rubber composites showed heterogeneity, and the stresses were concentrated in the regions near the CB particles during compression. The area of stress concentration gradually expanded with increasing strain and eventually formed a stress network structure. This stress network bore most of the macroscopic stress and was considered the key reinforcement mechanism of CB-filled rubber. The stress transfer process in the rubber matrix was visualized in real space for the first time. Based on the image data from the AFM experiments, we used finite-element method (FEM) simulations to reproduce the microscopic deformation process of CB-filled rubber. The stress distribution images simulated by FEM showed heterogeneity consistent with AFM. In this study, an in situ visualization of material deformation confirmed the predictions of microscopic deformation behavior from previous theories and models; it also provided new insights into the microscopic reinforcement mechanisms of CB-filled rubber composites based on microscopic stress distribution images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑先生完成签到 ,获得积分10
1秒前
ding应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
屋巫奈奈完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
ksmile完成签到 ,获得积分10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
斯文墨镜完成签到,获得积分10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小小橙完成签到 ,获得积分10
2秒前
111111发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
善学以致用应助zyy采纳,获得10
4秒前
允怡发布了新的文献求助10
5秒前
5秒前
天天快乐应助宏hong采纳,获得10
6秒前
Hello应助1313131采纳,获得10
7秒前
隐形曼青应助小火苗采纳,获得10
7秒前
7秒前
认真思真发布了新的文献求助30
8秒前
8秒前
阿林琳琳发布了新的文献求助10
8秒前
仁爱柠檬完成签到,获得积分10
9秒前
淡定吃吃完成签到,获得积分10
9秒前
要减肥的乐双完成签到,获得积分10
10秒前
笑眯眯完成签到,获得积分10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662822
求助须知:如何正确求助?哪些是违规求助? 3223668
关于积分的说明 9752507
捐赠科研通 2933578
什么是DOI,文献DOI怎么找? 1606153
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734771