Loose spherical FeOOH/MnO nanoarrays from a simple in situ hydrothermal method for enhanced oxygen evolution electrocatalysis

电催化剂 塔菲尔方程 过电位 析氧 材料科学 分解水 纳米技术 催化作用 电解水 化学工程 双金属片 氧化物 电解质 电解 金属 化学 光催化 电极 冶金 电化学 工程类 物理化学 生物化学
作者
Dexing Meng,Lihai Wei,Jiawei Shi,Qianqian Jiang,Xiaodong Wu,Jianguo Tang
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:665: 131228-131228 被引量:7
标识
DOI:10.1016/j.colsurfa.2023.131228
摘要

The development of abundant, low-cost, stable and efficient non-precious metal OER electrocatalysts is of great significance in large-scale water splitting for hydrogen production. Herein, loose spherical (Spherical-like composed of loose nanoarrays) MnFe bimetal oxide nanoarrays based on nickel foam were successfully synthesized by a simple in situ hydrothermal method. The loose nanoarrays facilitate water adsorption and exposure of active sites, enabling the catalyst to exhibit excellent electrocatalytic OER activity in alkaline media with an overpotential of 209 mV and a Tafel slope of 70 mV·dec−1. The addition of Fe greatly improves the electrical conductivity of the composites and the Fe site as the main active site, which together to the enhanced catalytic performance of FeOOH/MnO@NF (FeOOH/MnO In situ growth on Nickel Foam). In addition, the low crystallinity characteristic of the material is favorable for lattice distortion shrinkage, and the formation of Fe/Mn-O sites can accelerate the charge transfer rate, thereby accelerating the OER process. Meanwhile, the results of density functional theory calculations show that due to the strong interaction of electrons between the heterostructure, the displacement of the d-band center of the metal atom and the enhanced density of states near the Fermi level can adjust the binding energy intensity, which can affect the OER process, thereby improving the electrocatalytic performance. The findings broaden the exploration avenues of bimetallic oxyhydroxides as materials for water electrolysis and provides a new strategy for energy conversion and storage of sustainable energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助搬砖道人采纳,获得10
刚刚
思源应助校长采纳,获得10
刚刚
鸣隐完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
3秒前
3秒前
科研通AI5应助yx采纳,获得10
3秒前
4秒前
hym完成签到,获得积分10
4秒前
马静雨关注了科研通微信公众号
4秒前
111222完成签到,获得积分20
4秒前
5秒前
5秒前
三卡车安排你完成签到,获得积分10
6秒前
请叫我风吹麦浪应助Seiswan采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
曾经以亦完成签到,获得积分10
8秒前
所所应助发疯的游子采纳,获得10
8秒前
9秒前
jcm发布了新的文献求助10
10秒前
辛勤的初晴完成签到,获得积分20
10秒前
Scidog发布了新的文献求助10
10秒前
单于静柏完成签到,获得积分10
11秒前
校长发布了新的文献求助10
11秒前
12秒前
御觞丶完成签到,获得积分10
12秒前
今后应助zhui采纳,获得10
13秒前
13秒前
SciGPT应助雾蓝采纳,获得10
13秒前
lulu828完成签到,获得积分10
14秒前
14秒前
科研闲人完成签到,获得积分10
15秒前
内向秋寒发布了新的文献求助10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794