Cross-attention PHV: Prediction of human and virus protein-protein interactions using cross-attention–based neural networks

卷积神经网络 计算机科学 计算生物学 鉴定(生物学) 水准点(测量) 交叉验证 蛋白质组学 一般化 机器学习 人工智能 生物 遗传学 基因 大地测量学 数学分析 植物 数学 地理
作者
Sho Tsukiyama,Hiroyuki Kurata
出处
期刊:Computational and structural biotechnology journal [Elsevier BV]
卷期号:20: 5564-5573 被引量:4
标识
DOI:10.1016/j.csbj.2022.10.012
摘要

Viral infections represent a major health concern worldwide. The alarming rate at which SARS-CoV-2 spreads, for example, led to a worldwide pandemic. Viruses incorporate genetic material into the host genome to hijack host cell functions such as the cell cycle and apoptosis. In these viral processes, protein-protein interactions (PPIs) play critical roles. Therefore, the identification of PPIs between humans and viruses is crucial for understanding the infection mechanism and host immune responses to viral infections and for discovering effective drugs. Experimental methods including mass spectrometry-based proteomics and yeast two-hybrid assays are widely used to identify human-virus PPIs, but these experimental methods are time-consuming, expensive, and laborious. To overcome this problem, we developed a novel computational predictor, named cross-attention PHV, by implementing two key technologies of the cross-attention mechanism and a one-dimensional convolutional neural network (1D-CNN). The cross-attention mechanisms were very effective in enhancing prediction and generalization abilities. Application of 1D-CNN to the word2vec-generated feature matrices reduced computational costs, thus extending the allowable length of protein sequences to 9000 amino acid residues. Cross-attention PHV outperformed existing state-of-the-art models using a benchmark dataset and accurately predicted PPIs for unknown viruses. Cross-attention PHV also predicted human-SARS-CoV-2 PPIs with area under the curve values >0.95. The Cross-attention PHV web server and source codes are freely available at https://kurata35.bio.kyutech.ac.jp/Cross-attention_PHV/ and https://github.com/kuratahiroyuki/Cross-Attention_PHV, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心帽子完成签到,获得积分20
刚刚
1秒前
2秒前
星辰大海应助白茶泡泡球采纳,获得10
2秒前
zhutae完成签到,获得积分10
2秒前
nku_xjli发布了新的文献求助30
2秒前
Lin完成签到,获得积分10
3秒前
彭于彦祖应助孤独的寒天采纳,获得50
5秒前
欲望被鬼应助清秀千兰采纳,获得20
5秒前
科研最厉害的柒柒子完成签到,获得积分10
6秒前
6秒前
细心帽子发布了新的文献求助10
6秒前
实验好难应助柠木采纳,获得10
8秒前
10秒前
ximitona发布了新的文献求助10
10秒前
科研小民工应助咩咩采纳,获得40
10秒前
11秒前
12秒前
13秒前
7even完成签到,获得积分10
13秒前
华仔应助北城采纳,获得10
14秒前
14秒前
15秒前
eyu完成签到,获得积分10
15秒前
gzsy发布了新的文献求助10
15秒前
无辜雁易发布了新的文献求助10
16秒前
可乐加糖完成签到,获得积分20
16秒前
17秒前
17秒前
19秒前
ncjdoi发布了新的文献求助10
19秒前
冷傲的荧荧完成签到,获得积分10
20秒前
20秒前
美满眼神发布了新的文献求助10
21秒前
大模型应助gzsy采纳,获得10
21秒前
kksun发布了新的文献求助10
22秒前
zywoo发布了新的文献求助10
22秒前
小蘑菇应助可乐加糖采纳,获得10
23秒前
24秒前
妍小猪发布了新的文献求助10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668230
求助须知:如何正确求助?哪些是违规求助? 3226593
关于积分的说明 9770416
捐赠科研通 2936503
什么是DOI,文献DOI怎么找? 1608642
邀请新用户注册赠送积分活动 759754
科研通“疑难数据库(出版商)”最低求助积分说明 735537