已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

sCellST: a Multiple Instance Learning approach to predict single-cell gene expression from H&E images using spatial transcriptomics

转录组 基因表达 计算生物学 RNA序列 计算机科学 表达式(计算机科学) 基因 细胞 人工智能 生物 遗传学 程序设计语言
作者
Loic Chadoutaud,Marvin Lerousseau,Daniel Herrero-Saboya,Julian Ostermaier,Jacqueline Fontugne,Emmanuel Barillot,Thomas Walter
标识
DOI:10.1101/2024.11.07.622225
摘要

Advancing our understanding of tissue organization and its disruptions in disease remains a key focus in biomedical research. Histological slides stained with Hematoxylin and Eosin (H&E) provide an abundant source of morphological information, while Spatial Transcriptomics (ST) enables detailed, spatially-resolved gene expression (GE) analysis, though at a high cost and with limited clinical accessibility. Predicting GE directly from H&E images using ST as a reference has thus become an attractive objective; however, current patch-based approaches lack single-cell resolution. Here, we present sCellST, a multiple-instance learning model that predicts GE by leveraging cell morphology alone, achieving remarkable predictive accuracy. When tested on a pancreatic ductal adenocarcinoma dataset, sCellST outperformed traditional methods, underscoring the value of basing predictions on single-cell images rather than tissue patches. Additionally, we demonstrate that sCellST can detect subtle morphological differences among cell types by utilizing marker genes in ovarian cancer samples. Our findings suggest that this approach could enable single-cell level GE predictions across large cohorts of H&E-stained slides, providing an innovative means to valorize this abundant resource in biomedical research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助一两二两三两斤采纳,获得10
1秒前
2秒前
科研通AI6应助大方的乐天采纳,获得10
5秒前
5秒前
8秒前
xuxingxing完成签到,获得积分10
8秒前
自由梦槐发布了新的文献求助10
10秒前
11秒前
彭于晏应助non平行线采纳,获得10
11秒前
SciGPT应助满意妙梦采纳,获得10
12秒前
14秒前
15秒前
诸葛亮晶晶完成签到,获得积分10
15秒前
16秒前
18秒前
18秒前
科研通AI6应助Hikx采纳,获得10
19秒前
19秒前
WLH完成签到,获得积分10
19秒前
levicho发布了新的文献求助10
22秒前
23秒前
24秒前
26秒前
BowieHuang应助科研通管家采纳,获得20
27秒前
FashionBoy应助科研通管家采纳,获得10
27秒前
BowieHuang应助科研通管家采纳,获得10
27秒前
Lucas应助科研通管家采纳,获得10
27秒前
小蘑菇应助科研通管家采纳,获得10
27秒前
共享精神应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
搜集达人应助科研通管家采纳,获得10
27秒前
爆米花应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
科目三应助科研通管家采纳,获得10
27秒前
28秒前
隐形曼青应助科研通管家采纳,获得10
28秒前
wanci应助科研通管家采纳,获得10
28秒前
Hello应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599516
求助须知:如何正确求助?哪些是违规求助? 4685150
关于积分的说明 14837969
捐赠科研通 4668610
什么是DOI,文献DOI怎么找? 2538003
邀请新用户注册赠送积分活动 1505428
关于科研通互助平台的介绍 1470784