sCellST: a Multiple Instance Learning approach to predict single-cell gene expression from H&E images using spatial transcriptomics

转录组 基因表达 计算生物学 RNA序列 计算机科学 表达式(计算机科学) 基因 细胞 人工智能 生物 遗传学 程序设计语言
作者
Loic Chadoutaud,Marvin Lerousseau,Daniel Herrero-Saboya,Julian Ostermaier,Jacqueline Fontugne,Emmanuel Barillot,Thomas Walter
标识
DOI:10.1101/2024.11.07.622225
摘要

Advancing our understanding of tissue organization and its disruptions in disease remains a key focus in biomedical research. Histological slides stained with Hematoxylin and Eosin (H&E) provide an abundant source of morphological information, while Spatial Transcriptomics (ST) enables detailed, spatially-resolved gene expression (GE) analysis, though at a high cost and with limited clinical accessibility. Predicting GE directly from H&E images using ST as a reference has thus become an attractive objective; however, current patch-based approaches lack single-cell resolution. Here, we present sCellST, a multiple-instance learning model that predicts GE by leveraging cell morphology alone, achieving remarkable predictive accuracy. When tested on a pancreatic ductal adenocarcinoma dataset, sCellST outperformed traditional methods, underscoring the value of basing predictions on single-cell images rather than tissue patches. Additionally, we demonstrate that sCellST can detect subtle morphological differences among cell types by utilizing marker genes in ovarian cancer samples. Our findings suggest that this approach could enable single-cell level GE predictions across large cohorts of H&E-stained slides, providing an innovative means to valorize this abundant resource in biomedical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FChen完成签到,获得积分10
2秒前
XxxPessimist1c完成签到,获得积分10
3秒前
英俊的铭应助bing采纳,获得10
3秒前
3秒前
5秒前
6秒前
我是老大应助摩登灰太狼采纳,获得10
7秒前
7秒前
8秒前
9秒前
中午发布了新的文献求助10
10秒前
ies77发布了新的文献求助10
11秒前
星辰大海应助zhou采纳,获得10
12秒前
13秒前
BGRC131031发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
16秒前
贺岁安完成签到,获得积分10
16秒前
摩登灰太狼完成签到,获得积分10
16秒前
17秒前
Singularity应助屎味烤地瓜采纳,获得20
17秒前
18秒前
19秒前
所所应助高贵的夜南采纳,获得10
19秒前
19秒前
19秒前
Owen应助赵QQ采纳,获得30
19秒前
19秒前
20秒前
Lucas应助刘十九采纳,获得10
21秒前
21秒前
王浩宇发布了新的文献求助10
21秒前
枫叶发布了新的文献求助10
21秒前
Yvonne发布了新的文献求助10
21秒前
21秒前
彩色白桃发布了新的文献求助10
22秒前
23秒前
yuan发布了新的文献求助10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3132957
求助须知:如何正确求助?哪些是违规求助? 2784184
关于积分的说明 7765053
捐赠科研通 2439290
什么是DOI,文献DOI怎么找? 1296754
科研通“疑难数据库(出版商)”最低求助积分说明 624656
版权声明 600771