DF2 RQ: Dynamic Feature Fusion via Region-wise Queries for Semantic Segmentation of Multimodal Remote Sensing Data

计算机科学 模式 特征(语言学) 人工智能 模态(人机交互) 模式识别(心理学) 传感器融合 判别式 融合 语义学(计算机科学) 分割 语言学 哲学 社会科学 社会学 程序设计语言
作者
Shiyang Feng,Zhaowei Li,Bo Zhang,Bin Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3526247
摘要

Although remote sensing (RS) data with multiple modalities can be used to significantly improve the accuracy of semantic segmentation in RS data, how to effectively extract multimodal information through multimodal feature fusion remains a challenging task. Specifically, existing methods for multimodal feature fusion still face two major challenges: 1) Due to the diverse imaging mechanisms of multimodal RS data, the boundaries of the same foreground may vary across different modalities, leading to the inclusion of unwanted background semantics in the fused foreground features; 2) RS data from different modalities exhibit varying discriminative abilities for different foregrounds, making it challenging to determine the proportion of semantic information for each modality in the fusion results. To address the above issues, we propose a dynamic feature fusion method based on region-wise queries, namely DF 2 RQ, for SS of multimodal RS data. This method is primarily composed of two components: the spatial reconstruction (SR) module and the dynamic fusion (DF) module. Within the SR module, we propose a spatial reconstruction scheme that samples foreground features from different modalities, achieving independent reconstruction of different unimodal features, thereby alleviating the semantic mixing between foreground and background across modalities. In the DF module, a feature fusion scheme based on unimodal feature reference positions is proposed to obtain fusion weights for each modality, thereby enabling the dynamic fusion of complementary features from multiple modalities. The performance of the proposed method has been extensively evaluated on various multimodal RS datasets for SS, and the experimental results consistently show that the proposed method achieves state-of-the-art accuracy on multiple commonly used metrics. In addition, our code is available at https://github.com/I3ab/DF2RQ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
CodeCraft应助欣慰的小甜瓜采纳,获得10
1秒前
孟醒发布了新的文献求助10
2秒前
科研通AI5应助qq采纳,获得10
4秒前
5秒前
5秒前
杨涵完成签到 ,获得积分10
5秒前
JMrider发布了新的文献求助10
5秒前
6秒前
邱邱发布了新的文献求助10
6秒前
6秒前
GXX完成签到,获得积分10
6秒前
YoungLee完成签到,获得积分10
7秒前
学术蟑螂完成签到,获得积分10
7秒前
8秒前
风清扬发布了新的文献求助10
9秒前
小蘑菇应助罗咩咩采纳,获得10
9秒前
gg发布了新的文献求助10
10秒前
CMUSK完成签到,获得积分10
10秒前
一滴水完成签到,获得积分10
10秒前
HH发布了新的文献求助10
10秒前
10秒前
华仔应助zkyyinf_zero采纳,获得10
11秒前
学术蟑螂发布了新的文献求助10
11秒前
11秒前
小当家完成签到,获得积分10
11秒前
科研通AI5应助U9A采纳,获得10
12秒前
脑洞疼应助GXX采纳,获得10
12秒前
Owen应助哭泣的凡英采纳,获得10
14秒前
852应助燚y采纳,获得50
14秒前
14秒前
烟花应助dd采纳,获得10
14秒前
Talha发布了新的文献求助10
14秒前
渊思发布了新的文献求助10
15秒前
苏生鑫发布了新的文献求助10
15秒前
谨慎长颈鹿完成签到,获得积分10
16秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967779
求助须知:如何正确求助?哪些是违规求助? 3512913
关于积分的说明 11165458
捐赠科研通 3247930
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578