已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DF2RQ: Dynamic Feature Fusion via Region-Wise Queries for Semantic Segmentation of Multimodal Remote Sensing Data

计算机科学 模式 特征(语言学) 人工智能 模态(人机交互) 模式识别(心理学) 传感器融合 判别式 融合 语义学(计算机科学) 分割 社会科学 语言学 哲学 社会学 程序设计语言
作者
Shiyang Feng,Zhaowei Li,Bo Zhang,Bin Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:63: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2025.3526247
摘要

Although remote sensing (RS) data with multiple modalities can be used to significantly improve the accuracy of semantic segmentation in RS data, how to effectively extract multimodal information through multimodal feature fusion remains a challenging task. Specifically, existing methods for multimodal feature fusion still face two major challenges: 1) Due to the diverse imaging mechanisms of multimodal RS data, the boundaries of the same foreground may vary across different modalities, leading to the inclusion of unwanted background semantics in the fused foreground features; 2) RS data from different modalities exhibit varying discriminative abilities for different foregrounds, making it challenging to determine the proportion of semantic information for each modality in the fusion results. To address the above issues, we propose a dynamic feature fusion method based on region-wise queries, namely DF 2 RQ, for SS of multimodal RS data. This method is primarily composed of two components: the spatial reconstruction (SR) module and the dynamic fusion (DF) module. Within the SR module, we propose a spatial reconstruction scheme that samples foreground features from different modalities, achieving independent reconstruction of different unimodal features, thereby alleviating the semantic mixing between foreground and background across modalities. In the DF module, a feature fusion scheme based on unimodal feature reference positions is proposed to obtain fusion weights for each modality, thereby enabling the dynamic fusion of complementary features from multiple modalities. The performance of the proposed method has been extensively evaluated on various multimodal RS datasets for SS, and the experimental results consistently show that the proposed method achieves state-of-the-art accuracy on multiple commonly used metrics. In addition, our code is available at https://github.com/I3ab/DF2RQ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruru发布了新的文献求助10
1秒前
hizy完成签到 ,获得积分10
2秒前
酷波er应助lemonyu采纳,获得10
4秒前
小马甲应助Firmino采纳,获得30
5秒前
7秒前
谨慎的雁菡完成签到 ,获得积分10
9秒前
11秒前
11秒前
lhh7771117完成签到,获得积分10
11秒前
Jenny完成签到 ,获得积分10
12秒前
天元神尊完成签到 ,获得积分10
13秒前
14秒前
自由如冰完成签到 ,获得积分10
14秒前
guo完成签到 ,获得积分10
14秒前
淡淡一德完成签到 ,获得积分10
15秒前
善学以致用应助lhh7771117采纳,获得10
16秒前
马里兰州蛙泳胡萝卜完成签到,获得积分10
18秒前
UU完成签到,获得积分10
21秒前
蓝天应助hxjnx采纳,获得10
22秒前
bkagyin应助Ccccd采纳,获得10
22秒前
Jing完成签到,获得积分20
23秒前
25秒前
尊敬的雪兰完成签到,获得积分20
25秒前
lemonyu完成签到 ,获得积分10
26秒前
29秒前
29秒前
30秒前
angel发布了新的文献求助10
32秒前
要减肥的胖子应助Dandy采纳,获得20
32秒前
氟锑酸完成签到 ,获得积分10
32秒前
ll完成签到 ,获得积分10
33秒前
33秒前
33秒前
34秒前
好看的花花鱼完成签到 ,获得积分10
34秒前
Someone发布了新的文献求助10
37秒前
39秒前
星空物语完成签到 ,获得积分10
39秒前
镜哥发布了新的文献求助10
40秒前
蓝胖子完成签到,获得积分10
40秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705395
求助须知:如何正确求助?哪些是违规求助? 5163352
关于积分的说明 15245053
捐赠科研通 4859251
什么是DOI,文献DOI怎么找? 2607656
邀请新用户注册赠送积分活动 1558822
关于科研通互助平台的介绍 1516347