DF2 RQ: Dynamic Feature Fusion via Region-wise Queries for Semantic Segmentation of Multimodal Remote Sensing Data

计算机科学 模式 特征(语言学) 人工智能 模态(人机交互) 模式识别(心理学) 传感器融合 判别式 融合 语义学(计算机科学) 分割 语言学 哲学 社会科学 社会学 程序设计语言
作者
Shiyang Feng,Zhaowei Li,Bo Zhang,Bin Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3526247
摘要

Although remote sensing (RS) data with multiple modalities can be used to significantly improve the accuracy of semantic segmentation in RS data, how to effectively extract multimodal information through multimodal feature fusion remains a challenging task. Specifically, existing methods for multimodal feature fusion still face two major challenges: 1) Due to the diverse imaging mechanisms of multimodal RS data, the boundaries of the same foreground may vary across different modalities, leading to the inclusion of unwanted background semantics in the fused foreground features; 2) RS data from different modalities exhibit varying discriminative abilities for different foregrounds, making it challenging to determine the proportion of semantic information for each modality in the fusion results. To address the above issues, we propose a dynamic feature fusion method based on region-wise queries, namely DF 2 RQ, for SS of multimodal RS data. This method is primarily composed of two components: the spatial reconstruction (SR) module and the dynamic fusion (DF) module. Within the SR module, we propose a spatial reconstruction scheme that samples foreground features from different modalities, achieving independent reconstruction of different unimodal features, thereby alleviating the semantic mixing between foreground and background across modalities. In the DF module, a feature fusion scheme based on unimodal feature reference positions is proposed to obtain fusion weights for each modality, thereby enabling the dynamic fusion of complementary features from multiple modalities. The performance of the proposed method has been extensively evaluated on various multimodal RS datasets for SS, and the experimental results consistently show that the proposed method achieves state-of-the-art accuracy on multiple commonly used metrics. In addition, our code is available at https://github.com/I3ab/DF2RQ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Su发布了新的文献求助10
刚刚
刚刚
淡定的思松应助呆萌士晋采纳,获得10
刚刚
1秒前
2秒前
dilli完成签到 ,获得积分10
2秒前
cwy发布了新的文献求助10
4秒前
wz发布了新的文献求助10
4秒前
balzacsun发布了新的文献求助10
6秒前
JamesPei应助星星采纳,获得10
6秒前
7秒前
7秒前
laodie完成签到,获得积分10
8秒前
彭于晏应助ipeakkka采纳,获得10
8秒前
8秒前
敏感的芷发布了新的文献求助10
8秒前
susan发布了新的文献求助10
8秒前
9秒前
李爱国应助轻松的贞采纳,获得10
9秒前
wz完成签到,获得积分10
10秒前
子川完成签到 ,获得积分10
10秒前
怕孤独的鹭洋完成签到,获得积分10
10秒前
11秒前
耍酷的夏云完成签到,获得积分10
11秒前
laodie发布了新的文献求助10
12秒前
12秒前
小达完成签到,获得积分10
12秒前
nenoaowu发布了新的文献求助10
12秒前
文章要有性价比完成签到,获得积分10
13秒前
俏皮半烟完成签到,获得积分10
13秒前
Aki发布了新的文献求助10
13秒前
111完成签到,获得积分10
15秒前
耗尽完成签到,获得积分10
15秒前
烂漫驳发布了新的文献求助10
17秒前
轻松的贞完成签到,获得积分10
18秒前
李健应助balzacsun采纳,获得10
19秒前
轻松的悟空完成签到 ,获得积分10
21秒前
susan完成签到,获得积分10
22秒前
0029完成签到,获得积分10
24秒前
Aki完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824