DF2 RQ: Dynamic Feature Fusion via Region-wise Queries for Semantic Segmentation of Multimodal Remote Sensing Data

计算机科学 模式 特征(语言学) 人工智能 模态(人机交互) 模式识别(心理学) 传感器融合 判别式 融合 语义学(计算机科学) 分割 语言学 哲学 社会科学 社会学 程序设计语言
作者
Shiyang Feng,Zhaowei Li,Bo Zhang,Bin Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3526247
摘要

Although remote sensing (RS) data with multiple modalities can be used to significantly improve the accuracy of semantic segmentation in RS data, how to effectively extract multimodal information through multimodal feature fusion remains a challenging task. Specifically, existing methods for multimodal feature fusion still face two major challenges: 1) Due to the diverse imaging mechanisms of multimodal RS data, the boundaries of the same foreground may vary across different modalities, leading to the inclusion of unwanted background semantics in the fused foreground features; 2) RS data from different modalities exhibit varying discriminative abilities for different foregrounds, making it challenging to determine the proportion of semantic information for each modality in the fusion results. To address the above issues, we propose a dynamic feature fusion method based on region-wise queries, namely DF 2 RQ, for SS of multimodal RS data. This method is primarily composed of two components: the spatial reconstruction (SR) module and the dynamic fusion (DF) module. Within the SR module, we propose a spatial reconstruction scheme that samples foreground features from different modalities, achieving independent reconstruction of different unimodal features, thereby alleviating the semantic mixing between foreground and background across modalities. In the DF module, a feature fusion scheme based on unimodal feature reference positions is proposed to obtain fusion weights for each modality, thereby enabling the dynamic fusion of complementary features from multiple modalities. The performance of the proposed method has been extensively evaluated on various multimodal RS datasets for SS, and the experimental results consistently show that the proposed method achieves state-of-the-art accuracy on multiple commonly used metrics. In addition, our code is available at https://github.com/I3ab/DF2RQ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
森魁松骷发布了新的文献求助10
1秒前
4秒前
5秒前
5秒前
秀丽凡霜发布了新的文献求助10
6秒前
FashionBoy应助1111222333采纳,获得10
6秒前
花花发布了新的文献求助10
8秒前
yyy完成签到 ,获得积分10
9秒前
10秒前
哈哈哈哈哈哈完成签到 ,获得积分10
12秒前
cc应助yygz0703采纳,获得10
14秒前
nmamtf发布了新的文献求助10
15秒前
苗苗043完成签到,获得积分10
16秒前
斯文凡阳完成签到,获得积分10
17秒前
19秒前
22秒前
xiaoyu关注了科研通微信公众号
23秒前
23秒前
tx完成签到 ,获得积分20
24秒前
panpanpan发布了新的文献求助10
24秒前
24秒前
25秒前
28秒前
xiaoou发布了新的文献求助10
30秒前
现代数据线完成签到,获得积分20
31秒前
丘比特应助温羞花采纳,获得10
34秒前
34秒前
默默的化蛹完成签到,获得积分20
35秒前
科研通AI2S应助务实的秋白采纳,获得10
36秒前
1111222333发布了新的文献求助10
39秒前
41秒前
以心换心的猴子完成签到,获得积分20
41秒前
46秒前
47秒前
完美世界应助庄默羽采纳,获得10
47秒前
古月发布了新的文献求助10
49秒前
所所应助1111222333采纳,获得10
49秒前
竺兰舞完成签到,获得积分20
50秒前
皮夏寒发布了新的文献求助10
52秒前
52秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343311
求助须知:如何正确求助?哪些是违规求助? 2970371
关于积分的说明 8643748
捐赠科研通 2650451
什么是DOI,文献DOI怎么找? 1451275
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661473