Implications of lack of morphological information in fossil leaves related to Lauraceae: a statistical evaluation

樟科 分类单元 现存分类群 生物 分类等级 亲缘关系 进化生物学 鉴定(生物学) 生态学 生物化学
作者
Marco A. Rubalcava-Knoth,Sergio R.S. Cevallos-Ferriz
出处
期刊:Journal of Systematic Palaeontology [Taylor & Francis]
卷期号:23 (1)
标识
DOI:10.1080/14772019.2024.2432269
摘要

Fossil leaves serve as crucial repositories of palaeobiological information on angiosperms, with the Lauraceae family standing out as a highly represented group across geological time. The recognition of this diversity has been based mainly on comparing its leaf architecture and cuticle anatomical characteristics; however, the latter is sometimes not preserved, so leaf architecture is left as the only source of information available for identification in Lauraceae. This issue has produced a taxonomic mosaic in the family's fossil record, with taxa exhibiting well-established Lauraceae affinities and others with uncertain affinities. Nevertheless, the characters can be incompletely conserved (unknown characteristics), representing an obstacle in the identification process, which is one of the main challenges when making taxonomic assignments. Considering this problem, this study statistically analyses specific cases (it is not a taxonomic review of the family) and examines the taxonomic implications of this lack of information. The analysis used two statistical approaches: one accounting for the unknown information and another employing character imputation. A large dataset was utilized to ensure meaningful results, including extant Lauraceae taxa and fossils assigned to or related to the family. The results highlight the significant impact of unknown data on morphologic similarities and taxonomic affinities, particularly within Lauraceae, revealing challenges related to similar morphologies between extant and fossil groups and patterns found in other angiosperm groups. This study pioneered the demonstration and testing of this influential factor in taxonomic decisions, emphasizing the need for careful consideration in identifying fossil material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰晓兰发布了新的文献求助10
刚刚
1秒前
小红完成签到,获得积分10
1秒前
赘婿应助难过小懒虫采纳,获得10
1秒前
ikun完成签到,获得积分10
1秒前
2秒前
虹虹发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
wanci应助天菱采纳,获得10
5秒前
5秒前
6秒前
ymh完成签到,获得积分10
6秒前
研路漫漫发布了新的文献求助10
6秒前
丫丫完成签到,获得积分10
7秒前
Summer完成签到,获得积分10
7秒前
chenfaju发布了新的文献求助10
7秒前
楚舜华完成签到,获得积分10
7秒前
8秒前
CHEN发布了新的文献求助10
8秒前
三号技师完成签到,获得积分10
8秒前
cdjq发布了新的文献求助10
8秒前
8秒前
心灵美的大山完成签到,获得积分10
9秒前
wen完成签到,获得积分10
9秒前
9秒前
留胡子的如花完成签到,获得积分10
9秒前
陈丽媛发布了新的文献求助10
9秒前
细雨听风完成签到,获得积分10
10秒前
个性乐儿完成签到,获得积分10
11秒前
西瓜完成签到,获得积分10
11秒前
深情安青应助hanna采纳,获得10
12秒前
研友_VZG7GZ应助林读书采纳,获得10
14秒前
14秒前
splatoon发布了新的文献求助10
15秒前
kunny完成签到 ,获得积分10
15秒前
15秒前
邬不污完成签到,获得积分10
16秒前
搜集达人应助虹虹采纳,获得10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009325
求助须知:如何正确求助?哪些是违规求助? 3549162
关于积分的说明 11301105
捐赠科研通 3283572
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886205
科研通“疑难数据库(出版商)”最低求助积分说明 811301