Emerging perspectives on analytical techniques and machine learning for food metabolomics in the era of industry 4.0: a systematic review

背景(考古学) 计算机科学 人工智能 机器学习 降维 代谢组学 数据科学 标准化 线性判别分析 生化工程 生物信息学 工程类 生物 古生物学 操作系统
作者
Salman Taheri,Jelmir Craveiro de Andrade,Carlos Adam Conté-Júnior
出处
期刊:Critical Reviews in Food Science and Nutrition [Informa]
卷期号:: 1-27
标识
DOI:10.1080/10408398.2024.2435597
摘要

This review systematically explores the emerging perspectives on analytical techniques and machine learning applications in food metabolomics, with a focus on their roles in the era of Industry 4.0. The study emphasizes the utilization of chromatography-mass spectrometry and proton nuclear magnetic resonance spectroscopy as primary tools for metabolic profiling, highlighting their respective strengths and limitations. LC-MS, known for its high sensitivity and specificity, faces challenges such as complex data interpretation and the need for advanced computational tools.1H NMR offers reproducibility and quantitative accuracy but struggles with lower sensitivity compared to mass spectrometry. The review also delves into the integration of multivariate data analysis techniques like principal component analysis and partial least squares-discriminant analysis, which enhance data dimensionality reduction and pattern recognition, yet require careful validation to avoid overfitting. Furthermore, the application of machine learning algorithms, including random forests and support vector machines, is discussed in the context of improving classification and predictive tasks in food metabolomics. Practical applications of these technologies are demonstrated in areas such as quality control, nutritional studies, and food adulteration detection. The review emphasizes the need for standardization in methodologies and the development of more accessible and cost-effective analytical workflows. Future research directions include enhancing the sensitivity of 1H NMR, integrating metabolomics with other omics technologies, and fostering data sharing to build comprehensive reference libraries. This review aims to provide a comprehensive and critical overview of the current advancements and future potentials of analytical techniques and machine learning in food metabolomics, aligning with the goals of Industry 4.0.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助山丘采纳,获得10
1秒前
1秒前
优雅山柏发布了新的文献求助10
2秒前
2秒前
2秒前
jun完成签到 ,获得积分10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得20
3秒前
科目三应助科研通管家采纳,获得10
3秒前
彭于彦祖应助科研通管家采纳,获得30
3秒前
英姑应助科研通管家采纳,获得10
3秒前
模糊中正应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
模糊中正应助科研通管家采纳,获得10
3秒前
史迪仔完成签到,获得积分20
6秒前
6秒前
wang发布了新的文献求助10
6秒前
Lmm完成签到,获得积分0
6秒前
6秒前
思源应助Yi采纳,获得10
7秒前
8秒前
木子发布了新的文献求助10
8秒前
doctorbin完成签到 ,获得积分10
9秒前
叶红旭完成签到,获得积分20
9秒前
Dawn发布了新的文献求助10
10秒前
11秒前
领导范儿应助wang采纳,获得10
12秒前
山丘发布了新的文献求助10
13秒前
周芷卉完成签到 ,获得积分10
15秒前
Alex完成签到,获得积分10
18秒前
onmyway完成签到,获得积分10
18秒前
19秒前
20秒前
唐吉应助不吃芹菜采纳,获得10
20秒前
嘒彼小星完成签到 ,获得积分10
24秒前
善学以致用应助Fine采纳,获得10
24秒前
fox完成签到,获得积分10
25秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267535
求助须知:如何正确求助?哪些是违规求助? 2906979
关于积分的说明 8340317
捐赠科研通 2577592
什么是DOI,文献DOI怎么找? 1401153
科研通“疑难数据库(出版商)”最低求助积分说明 655000
邀请新用户注册赠送积分活动 633967