已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Emerging perspectives on analytical techniques and machine learning for food metabolomics in the era of industry 4.0: a systematic review

背景(考古学) 计算机科学 人工智能 机器学习 降维 代谢组学 数据科学 标准化 线性判别分析 生化工程 生物信息学 工程类 生物 操作系统 古生物学
作者
Salman Taheri,Jelmir Craveiro de Andrade,Carlos Adam Conte‐Júnior
出处
期刊:Critical Reviews in Food Science and Nutrition [Informa]
卷期号:: 1-27 被引量:6
标识
DOI:10.1080/10408398.2024.2435597
摘要

This review systematically explores the emerging perspectives on analytical techniques and machine learning applications in food metabolomics, with a focus on their roles in the era of Industry 4.0. The study emphasizes the utilization of chromatography-mass spectrometry and proton nuclear magnetic resonance spectroscopy as primary tools for metabolic profiling, highlighting their respective strengths and limitations. LC-MS, known for its high sensitivity and specificity, faces challenges such as complex data interpretation and the need for advanced computational tools.1H NMR offers reproducibility and quantitative accuracy but struggles with lower sensitivity compared to mass spectrometry. The review also delves into the integration of multivariate data analysis techniques like principal component analysis and partial least squares-discriminant analysis, which enhance data dimensionality reduction and pattern recognition, yet require careful validation to avoid overfitting. Furthermore, the application of machine learning algorithms, including random forests and support vector machines, is discussed in the context of improving classification and predictive tasks in food metabolomics. Practical applications of these technologies are demonstrated in areas such as quality control, nutritional studies, and food adulteration detection. The review emphasizes the need for standardization in methodologies and the development of more accessible and cost-effective analytical workflows. Future research directions include enhancing the sensitivity of 1H NMR, integrating metabolomics with other omics technologies, and fostering data sharing to build comprehensive reference libraries. This review aims to provide a comprehensive and critical overview of the current advancements and future potentials of analytical techniques and machine learning in food metabolomics, aligning with the goals of Industry 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王大壮完成签到,获得积分10
1秒前
小蘑菇应助yu_xie采纳,获得100
1秒前
farewell发布了新的文献求助20
2秒前
EliGolden完成签到,获得积分10
3秒前
三分发布了新的文献求助10
3秒前
浮游应助车宇采纳,获得10
3秒前
疯度发布了新的文献求助10
4秒前
染然苒冉发布了新的文献求助20
5秒前
灵巧的仙人掌完成签到,获得积分20
5秒前
cc发布了新的文献求助10
6秒前
EliGolden发布了新的文献求助10
6秒前
夏熠完成签到,获得积分10
7秒前
7秒前
黄耀完成签到,获得积分10
7秒前
不吃蛋黄完成签到,获得积分10
8秒前
我是老大应助czz采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
赘婿应助陶醉笑柳采纳,获得30
9秒前
9秒前
xuxiaoyan发布了新的文献求助10
10秒前
zzj发布了新的文献求助10
10秒前
树洞里的刺猬完成签到,获得积分10
11秒前
小屁孩发布了新的文献求助30
11秒前
不吃蛋黄发布了新的文献求助10
11秒前
12秒前
123456完成签到,获得积分10
12秒前
12秒前
疯度完成签到,获得积分10
13秒前
乐观的海发布了新的文献求助30
13秒前
灵巧的十八完成签到,获得积分10
14秒前
白茶完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
浪麻麻发布了新的文献求助10
16秒前
FashionBoy应助zzj采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400986
求助须知:如何正确求助?哪些是违规求助? 4520031
关于积分的说明 14077904
捐赠科研通 4432951
什么是DOI,文献DOI怎么找? 2433919
邀请新用户注册赠送积分活动 1426111
关于科研通互助平台的介绍 1404733