Emerging perspectives on analytical techniques and machine learning for food metabolomics in the era of industry 4.0: a systematic review

背景(考古学) 计算机科学 人工智能 机器学习 降维 代谢组学 数据科学 标准化 线性判别分析 生化工程 生物信息学 工程类 生物 古生物学 操作系统
作者
Salman Taheri,Jelmir Craveiro de Andrade,Carlos Adam Conte‐Júnior
出处
期刊:Critical Reviews in Food Science and Nutrition [Taylor & Francis]
卷期号:: 1-27 被引量:6
标识
DOI:10.1080/10408398.2024.2435597
摘要

This review systematically explores the emerging perspectives on analytical techniques and machine learning applications in food metabolomics, with a focus on their roles in the era of Industry 4.0. The study emphasizes the utilization of chromatography-mass spectrometry and proton nuclear magnetic resonance spectroscopy as primary tools for metabolic profiling, highlighting their respective strengths and limitations. LC-MS, known for its high sensitivity and specificity, faces challenges such as complex data interpretation and the need for advanced computational tools.1H NMR offers reproducibility and quantitative accuracy but struggles with lower sensitivity compared to mass spectrometry. The review also delves into the integration of multivariate data analysis techniques like principal component analysis and partial least squares-discriminant analysis, which enhance data dimensionality reduction and pattern recognition, yet require careful validation to avoid overfitting. Furthermore, the application of machine learning algorithms, including random forests and support vector machines, is discussed in the context of improving classification and predictive tasks in food metabolomics. Practical applications of these technologies are demonstrated in areas such as quality control, nutritional studies, and food adulteration detection. The review emphasizes the need for standardization in methodologies and the development of more accessible and cost-effective analytical workflows. Future research directions include enhancing the sensitivity of 1H NMR, integrating metabolomics with other omics technologies, and fostering data sharing to build comprehensive reference libraries. This review aims to provide a comprehensive and critical overview of the current advancements and future potentials of analytical techniques and machine learning in food metabolomics, aligning with the goals of Industry 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
古月发布了新的文献求助10
2秒前
稳重的香萱完成签到 ,获得积分10
3秒前
木木发布了新的文献求助10
5秒前
无奈手套发布了新的文献求助10
5秒前
科目三应助128采纳,获得10
6秒前
汎影发布了新的文献求助10
7秒前
曹博发布了新的文献求助10
7秒前
sunwei完成签到,获得积分10
9秒前
天天快乐应助谢大喵采纳,获得10
9秒前
12秒前
12秒前
Ava应助木木采纳,获得10
12秒前
12秒前
传奇3应助dili采纳,获得10
15秒前
huahua完成签到 ,获得积分10
15秒前
16秒前
小陈要发SCI完成签到 ,获得积分10
16秒前
轩辕中蓝完成签到 ,获得积分10
17秒前
17秒前
17秒前
BoBO完成签到,获得积分10
22秒前
one完成签到 ,获得积分10
23秒前
24秒前
小怡子完成签到,获得积分10
24秒前
simba发布了新的文献求助10
28秒前
可爱的函函应助谢大喵采纳,获得10
29秒前
汉堡包应助曹博采纳,获得10
29秒前
30秒前
31秒前
量子星尘发布了新的文献求助10
32秒前
GJJJJJJJ完成签到 ,获得积分10
33秒前
35秒前
36秒前
128发布了新的文献求助10
36秒前
梦梦发布了新的文献求助10
37秒前
shidapai2完成签到,获得积分10
38秒前
38秒前
科研通AI6应助TOMORI酱采纳,获得10
38秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120606
求助须知:如何正确求助?哪些是违规求助? 4325971
关于积分的说明 13478280
捐赠科研通 4159652
什么是DOI,文献DOI怎么找? 2279599
邀请新用户注册赠送积分活动 1281421
关于科研通互助平台的介绍 1220251