Emerging perspectives on analytical techniques and machine learning for food metabolomics in the era of industry 4.0: a systematic review

背景(考古学) 计算机科学 人工智能 机器学习 降维 代谢组学 数据科学 标准化 线性判别分析 生化工程 生物信息学 工程类 生物 操作系统 古生物学
作者
Salman Taheri,Jelmir Craveiro de Andrade,Carlos Adam Conte‐Júnior
出处
期刊:Critical Reviews in Food Science and Nutrition [Informa]
卷期号:: 1-27 被引量:6
标识
DOI:10.1080/10408398.2024.2435597
摘要

This review systematically explores the emerging perspectives on analytical techniques and machine learning applications in food metabolomics, with a focus on their roles in the era of Industry 4.0. The study emphasizes the utilization of chromatography-mass spectrometry and proton nuclear magnetic resonance spectroscopy as primary tools for metabolic profiling, highlighting their respective strengths and limitations. LC-MS, known for its high sensitivity and specificity, faces challenges such as complex data interpretation and the need for advanced computational tools.1H NMR offers reproducibility and quantitative accuracy but struggles with lower sensitivity compared to mass spectrometry. The review also delves into the integration of multivariate data analysis techniques like principal component analysis and partial least squares-discriminant analysis, which enhance data dimensionality reduction and pattern recognition, yet require careful validation to avoid overfitting. Furthermore, the application of machine learning algorithms, including random forests and support vector machines, is discussed in the context of improving classification and predictive tasks in food metabolomics. Practical applications of these technologies are demonstrated in areas such as quality control, nutritional studies, and food adulteration detection. The review emphasizes the need for standardization in methodologies and the development of more accessible and cost-effective analytical workflows. Future research directions include enhancing the sensitivity of 1H NMR, integrating metabolomics with other omics technologies, and fostering data sharing to build comprehensive reference libraries. This review aims to provide a comprehensive and critical overview of the current advancements and future potentials of analytical techniques and machine learning in food metabolomics, aligning with the goals of Industry 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
强健的迎波完成签到,获得积分10
2秒前
李健的小迷弟应助火羊宝采纳,获得10
2秒前
陈末应助p454q采纳,获得10
3秒前
cc发布了新的文献求助30
3秒前
隐形曼青应助朴实的西装采纳,获得30
3秒前
晓鹏发布了新的文献求助10
3秒前
3秒前
Dimple发布了新的文献求助180
4秒前
ruicao发布了新的文献求助10
5秒前
淡淡的完成签到,获得积分10
5秒前
5秒前
Echo完成签到,获得积分10
6秒前
dachengzi完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
晓晓马儿完成签到 ,获得积分10
7秒前
想人陪的采蓝完成签到 ,获得积分20
7秒前
8秒前
9秒前
晓鹏完成签到,获得积分10
10秒前
Hardskills发布了新的文献求助30
10秒前
10秒前
11秒前
潇洒笑了发布了新的文献求助10
11秒前
12秒前
12秒前
英吉利25发布了新的文献求助10
13秒前
积极凡阳发布了新的文献求助10
13秒前
Zerolii发布了新的文献求助20
14秒前
寻找论文完成签到,获得积分10
14秒前
huahua诀绝子完成签到,获得积分10
15秒前
静默完成签到 ,获得积分0
16秒前
16秒前
NexusExplorer应助luckly采纳,获得10
17秒前
科研通AI6应助麻坛宗师采纳,获得10
17秒前
eros4发布了新的文献求助10
17秒前
汉堡包应助云朵朵采纳,获得10
18秒前
NXK发布了新的文献求助10
18秒前
晚风发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405578
求助须知:如何正确求助?哪些是违规求助? 4523892
关于积分的说明 14095685
捐赠科研通 4437639
什么是DOI,文献DOI怎么找? 2435806
邀请新用户注册赠送积分活动 1427882
关于科研通互助平台的介绍 1406122