Emerging perspectives on analytical techniques and machine learning for food metabolomics in the era of industry 4.0: a systematic review

背景(考古学) 计算机科学 人工智能 机器学习 降维 代谢组学 数据科学 标准化 线性判别分析 生化工程 生物信息学 工程类 生物 操作系统 古生物学
作者
Salman Taheri,Jelmir Craveiro de Andrade,Carlos Adam Conte‐Júnior
出处
期刊:Critical Reviews in Food Science and Nutrition [Informa]
卷期号:65 (28): 6003-6029 被引量:9
标识
DOI:10.1080/10408398.2024.2435597
摘要

This review systematically explores the emerging perspectives on analytical techniques and machine learning applications in food metabolomics, with a focus on their roles in the era of Industry 4.0. The study emphasizes the utilization of chromatography-mass spectrometry and proton nuclear magnetic resonance spectroscopy as primary tools for metabolic profiling, highlighting their respective strengths and limitations. LC-MS, known for its high sensitivity and specificity, faces challenges such as complex data interpretation and the need for advanced computational tools.1H NMR offers reproducibility and quantitative accuracy but struggles with lower sensitivity compared to mass spectrometry. The review also delves into the integration of multivariate data analysis techniques like principal component analysis and partial least squares-discriminant analysis, which enhance data dimensionality reduction and pattern recognition, yet require careful validation to avoid overfitting. Furthermore, the application of machine learning algorithms, including random forests and support vector machines, is discussed in the context of improving classification and predictive tasks in food metabolomics. Practical applications of these technologies are demonstrated in areas such as quality control, nutritional studies, and food adulteration detection. The review emphasizes the need for standardization in methodologies and the development of more accessible and cost-effective analytical workflows. Future research directions include enhancing the sensitivity of 1H NMR, integrating metabolomics with other omics technologies, and fostering data sharing to build comprehensive reference libraries. This review aims to provide a comprehensive and critical overview of the current advancements and future potentials of analytical techniques and machine learning in food metabolomics, aligning with the goals of Industry 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楠小楠发布了新的文献求助10
刚刚
多多完成签到,获得积分10
刚刚
1秒前
坚果发布了新的文献求助10
1秒前
shtnice发布了新的文献求助20
2秒前
科研通AI6应助1111采纳,获得10
3秒前
3秒前
3秒前
WFLLL发布了新的文献求助10
4秒前
背后思卉应助夏硕采纳,获得10
4秒前
科研通AI6应助结实的秋天采纳,获得10
4秒前
4秒前
5秒前
IAN完成签到,获得积分10
5秒前
jingyu发布了新的文献求助10
6秒前
酷波er应助无奈诗蕊采纳,获得10
8秒前
8秒前
阿亮86完成签到,获得积分10
8秒前
9秒前
anpingzhao发布了新的文献求助10
9秒前
10秒前
情怀应助SA采纳,获得10
10秒前
10秒前
潇洒映菱完成签到,获得积分10
10秒前
陈哥发布了新的文献求助10
10秒前
明朝风起发布了新的文献求助10
11秒前
11秒前
石头发布了新的文献求助10
12秒前
12秒前
梓雨完成签到,获得积分10
14秒前
汉文帝完成签到,获得积分10
14秒前
15秒前
zozo发布了新的文献求助10
16秒前
anpingzhao完成签到,获得积分10
16秒前
IAN发布了新的文献求助10
16秒前
嘿嘿发布了新的文献求助10
16秒前
only发布了新的文献求助10
17秒前
明朝风起完成签到,获得积分10
17秒前
17秒前
17秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588375
求助须知:如何正确求助?哪些是违规求助? 4671508
关于积分的说明 14787418
捐赠科研通 4625221
什么是DOI,文献DOI怎么找? 2531826
邀请新用户注册赠送积分活动 1500389
关于科研通互助平台的介绍 1468314