scCamAge: A context-aware prediction engine for cellular age, aging-associated bioactivities, and morphometrics

形态计量学 背景(考古学) 生物 计算生物学 生物信息学 进化生物学 生态学 古生物学
作者
Vishakha Gautam,Subhadeep Duari,Saveena Solanki,Mudit Gupta,Aayushi Mittal,Sakshi Arora,Anmol Aggarwal,Anmol Sharma,Sarthak Tyagi,Rathod Kunal Pankajbhai,Arushi Sharma,Sonam Chauhan,Shiva Satija,Suvendu Kumar,Sanjay Kumar Mohanty,Juhi Tayal,Nilesh Kumar Dixit,Debarka Sengupta,Anurag Mehta,Gaurav Ahuja
出处
期刊:Cell Reports [Cell Press]
卷期号:44 (2): 115270-115270
标识
DOI:10.1016/j.celrep.2025.115270
摘要

Highlights•scCamAge leverages single-cell image, shape, and bioactivities for age prediction•scCamAge was rigorously validated using aging-associated drugs and knockouts•Trained on yeast, scCamAge predicts human fibroblast senescence•scCamAge unveiled the evolutionary conservation of aging phenotypesSummaryCurrent deep-learning-based image-analysis solutions exhibit limitations in holistically capturing spatiotemporal cellular changes, particularly during aging. We present scCamAge, an advanced context-aware multimodal prediction engine that co-leverages image-based cellular spatiotemporal features at single-cell resolution alongside cellular morphometrics and aging-associated bioactivities such as genomic instability, mitochondrial dysfunction, vacuolar dynamics, reactive oxygen species levels, and epigenetic and proteasomal dysfunctions. scCamAge employed heterogeneous datasets comprising ∼1 million single yeast cells and was validated using pro-longevity drugs, genetic mutants, and stress-induced models. scCamAge also predicted a pro-longevity response in yeast cells under iterative thermal stress, confirmed using integrative omics analyses. Interestingly, scCamAge, trained solely on yeast images, without additional learning, surpasses generic models in predicting chemical and replication-induced senescence in human fibroblasts, indicating evolutionary conservation of aging-related morphometrics. Finally, we enhanced the generalizability of scCamAge by retraining it on human fibroblast senescence datasets, which improved its ability to predict senescent cells.Graphical abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
健壮的如松完成签到,获得积分20
5秒前
5秒前
7秒前
无心的钢铁侠完成签到,获得积分10
8秒前
def发布了新的文献求助10
8秒前
无心的闭月完成签到,获得积分10
10秒前
勤恳丹妗完成签到,获得积分10
11秒前
changewoo完成签到,获得积分20
11秒前
Liu完成签到,获得积分10
13秒前
慕青应助寒灯独夜人采纳,获得10
13秒前
胖挺发布了新的文献求助10
13秒前
Hello应助康zai采纳,获得10
15秒前
15秒前
changewoo发布了新的文献求助10
18秒前
22秒前
22秒前
def完成签到,获得积分20
23秒前
bkagyin应助和谐的以寒采纳,获得10
24秒前
胖挺完成签到 ,获得积分20
24秒前
24秒前
24秒前
24秒前
封听白完成签到,获得积分0
25秒前
25秒前
ccccchen发布了新的文献求助30
25秒前
山谷与花发布了新的文献求助10
28秒前
梧桐发布了新的文献求助10
28秒前
深味i完成签到,获得积分10
28秒前
康zai完成签到,获得积分10
28秒前
冷静烤鸡发布了新的文献求助10
30秒前
30秒前
逍遥完成签到,获得积分10
30秒前
虚心向梦发布了新的文献求助10
30秒前
samar完成签到,获得积分10
31秒前
32秒前
33秒前
34秒前
35秒前
米米碎片完成签到,获得积分10
35秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737279
求助须知:如何正确求助?哪些是违规求助? 3281146
关于积分的说明 10023095
捐赠科研通 2997818
什么是DOI,文献DOI怎么找? 1644858
邀请新用户注册赠送积分活动 782224
科研通“疑难数据库(出版商)”最低求助积分说明 749717