共晶体系
电解质
电化学
材料科学
电池(电)
阴极
电化学窗口
分离器(采油)
化学工程
锂(药物)
电极
物理化学
复合材料
化学
离子电导率
微观结构
热力学
工程类
内分泌学
物理
功率(物理)
医学
作者
Peipei Ding,Haocheng Yuan,Ligang Xu,Lingqiao Wu,Haozhe Du,Shu Zhao,Dengfeng Yu,Zuoyu Qin,Hong Liu,Yue Li,Xu Zhang,Haijun Yu,Mingxue Tang,Yaoyu Ren,Liangliang Li,Ce‐Wen Nan
标识
DOI:10.1002/adma.202413654
摘要
Abstract The safety and cycle stability of lithium metal batteries (LMBs) under conditions of high cut‐off voltage and fast charging put forward higher requirements for electrolytes. Here, a sulfonate‐based deep eutectic electrolyte (DEE) resulting from the eutectic effect between solid sultone and lithium bis(trifluoromethanesulfonyl)imide without any other additives is reported. The intermolecular coordination effect triggers this eutectic phenomenon, as evidenced with nuclear magnetic resonance, and thus the electrochemical behavior of the DEE can be controlled by jointly regulating the coordination effects of F···H and Li···O intermolecular interactions. The DEE with a properly coordinated environment of Li + presents a low motion barrier and a high transport rate of localized Li + , leading to a 10 C fast‐charging LiFePO 4 ||Li battery with a capacity retention of 95.1% after 500 cycles. Meanwhile, the strengthened α −H···F coordination broadens the electrochemical stability window of the DEE, thus enabling the cycle stability of high‐capacity and high‐voltage cathode materials in LMBs, e.g., a cycle stability at 4.5 V in the LiNi 0.88 Co 0.07 Mn 0.05 O 2 ||Li battery with a capacity retention of 81.0% after 500 cycles, and an excellent compatibility in 4.5 V LiCoO 2 ||Li and 4.8 V Li 1.13 Mn 0.517 Ni 0.256 Co 0.097 O 2 ||Li batteries. The practical applicability of the carefully designed DEE is underscored through successful implementation in pouch cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI