Fault detection for Li-ion batteries of electric vehicles with segmented regression method

电池(电) 计算机科学 断层(地质) 电压 故障检测与隔离 可靠性(半导体) 过程(计算) 回归 回归分析 可靠性工程 航程(航空) 实时计算 汽车工程 人工智能 工程类 机器学习 统计 电气工程 功率(物理) 数学 执行机构 航空航天工程 地震学 地质学 物理 操作系统 量子力学
作者
Muaaz Bin Kaleem,Yun Zhou,Jiang Fu,Zhijun Liu,Heng Li
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-82960-0
摘要

Electric vehicles are increasingly popular for their environmental benefits and cost savings, but the reliability and safety of their lithium-ion batteries are critical concerns. Current regression methods for battery fault detection often analyze charging and discharging as a single continuous process, missing important phase differences. This paper proposes segmented regression to better capture these distinct characteristics for accurate fault detection. The focus is on detecting voltage deviations caused by internal short circuits, external short circuits, and capacity degradation, which are primary indicators of battery faults. Firstly, data from real electric vehicles, operating under normal and faulty conditions, is collected over a period of 18 months. Secondly, the segmented regression method is utilized to segment the data based on the charging and discharging cycles and capture potential dependencies in battery behavior within each cycle. Thirdly, an optimized gated recurrent unit network is developed and integrated with the segmented regression to enable accurate cell voltage estimation. Lastly, an adaptive threshold algorithm is proposed to integrate driving behavior and environmental factors into a Gaussian process regression model. The integrated model dynamically estimates the normal fluctuation range of battery cell voltages for fault detection. The effectiveness of the proposed method is validated on a comprehensive dataset, achieving superior accuracy with values of 99.803% and 99.507% during the charging and discharging phases, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实旭尧完成签到 ,获得积分10
刚刚
刚刚
freebird应助温柔采纳,获得10
刚刚
nihaoxiaoai发布了新的文献求助10
刚刚
刚刚
刚刚
24813016发布了新的文献求助10
刚刚
1秒前
嗯哼发布了新的文献求助10
1秒前
shanjianjie发布了新的文献求助30
1秒前
量子星尘发布了新的文献求助10
1秒前
朱浩泽完成签到,获得积分10
2秒前
qq大魔王发布了新的文献求助50
2秒前
柏拉图发布了新的文献求助10
2秒前
2秒前
3秒前
nekobeing发布了新的文献求助50
3秒前
LJR完成签到,获得积分20
4秒前
4秒前
Mathilda完成签到,获得积分10
4秒前
5秒前
7秒前
缥缈尔丝发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
Demon发布了新的文献求助10
7秒前
嘿嘿完成签到,获得积分10
7秒前
雨醉东风发布了新的文献求助10
7秒前
8秒前
共享精神应助山东及时雨采纳,获得10
8秒前
斯文败类应助嗯哼采纳,获得10
8秒前
8秒前
8秒前
糖豆发布了新的文献求助10
8秒前
莱茵河完成签到 ,获得积分10
9秒前
cucu完成签到,获得积分20
9秒前
9秒前
SID发布了新的文献求助10
9秒前
健忘鞋垫完成签到,获得积分10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619809
求助须知:如何正确求助?哪些是违规求助? 4704349
关于积分的说明 14927602
捐赠科研通 4760460
什么是DOI,文献DOI怎么找? 2550657
邀请新用户注册赠送积分活动 1513453
关于科研通互助平台的介绍 1474498