Fault detection for Li-ion batteries of electric vehicles with segmented regression method

电池(电) 计算机科学 断层(地质) 电压 故障检测与隔离 可靠性(半导体) 过程(计算) 回归 回归分析 可靠性工程 航程(航空) 实时计算 汽车工程 人工智能 工程类 机器学习 统计 电气工程 功率(物理) 数学 执行机构 物理 量子力学 地震学 航空航天工程 地质学 操作系统
作者
Muaaz Bin Kaleem,Yun Zhou,Jiang Fu,Zhijun Liu,Heng Li
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-82960-0
摘要

Electric vehicles are increasingly popular for their environmental benefits and cost savings, but the reliability and safety of their lithium-ion batteries are critical concerns. Current regression methods for battery fault detection often analyze charging and discharging as a single continuous process, missing important phase differences. This paper proposes segmented regression to better capture these distinct characteristics for accurate fault detection. The focus is on detecting voltage deviations caused by internal short circuits, external short circuits, and capacity degradation, which are primary indicators of battery faults. Firstly, data from real electric vehicles, operating under normal and faulty conditions, is collected over a period of 18 months. Secondly, the segmented regression method is utilized to segment the data based on the charging and discharging cycles and capture potential dependencies in battery behavior within each cycle. Thirdly, an optimized gated recurrent unit network is developed and integrated with the segmented regression to enable accurate cell voltage estimation. Lastly, an adaptive threshold algorithm is proposed to integrate driving behavior and environmental factors into a Gaussian process regression model. The integrated model dynamically estimates the normal fluctuation range of battery cell voltages for fault detection. The effectiveness of the proposed method is validated on a comprehensive dataset, achieving superior accuracy with values of 99.803% and 99.507% during the charging and discharging phases, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坚强亦丝应助游大达采纳,获得10
1秒前
@小小搬砖瑞完成签到,获得积分10
1秒前
怡然若雁发布了新的文献求助10
3秒前
coc关注了科研通微信公众号
3秒前
双双完成签到,获得积分10
3秒前
瑶625发布了新的文献求助10
3秒前
Strike完成签到,获得积分10
4秒前
调皮纸飞机完成签到,获得积分20
4秒前
董小李完成签到,获得积分10
4秒前
4秒前
研友_8yN60L完成签到,获得积分10
5秒前
zhanzhanzhan发布了新的文献求助10
5秒前
科研通AI5应助自爱悠然采纳,获得10
5秒前
5秒前
Accept应助胡枝子采纳,获得30
5秒前
Strike发布了新的文献求助10
6秒前
Rsoup完成签到,获得积分10
6秒前
7秒前
zz发布了新的文献求助10
7秒前
sfzz完成签到,获得积分10
7秒前
7秒前
如履平川完成签到 ,获得积分10
7秒前
大个应助阳光海云采纳,获得50
7秒前
7秒前
新青年完成签到,获得积分0
7秒前
7秒前
现代的又柔应助研友_8yN60L采纳,获得10
8秒前
8秒前
李健应助傲娇的云朵采纳,获得10
8秒前
8秒前
8秒前
liudiqiu完成签到,获得积分10
8秒前
Akashi完成签到,获得积分10
8秒前
风中珩完成签到 ,获得积分10
9秒前
LIU发布了新的文献求助10
9秒前
9秒前
李知恩完成签到,获得积分10
10秒前
10秒前
EthanChan完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740