Fault detection for Li-ion batteries of electric vehicles with segmented regression method

电池(电) 计算机科学 断层(地质) 电压 故障检测与隔离 可靠性(半导体) 过程(计算) 回归 回归分析 可靠性工程 航程(航空) 实时计算 汽车工程 人工智能 工程类 机器学习 统计 电气工程 功率(物理) 数学 执行机构 航空航天工程 地震学 地质学 物理 操作系统 量子力学
作者
Muaaz Bin Kaleem,Yun Zhou,Jiang Fu,Zhijun Liu,Heng Li
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-82960-0
摘要

Electric vehicles are increasingly popular for their environmental benefits and cost savings, but the reliability and safety of their lithium-ion batteries are critical concerns. Current regression methods for battery fault detection often analyze charging and discharging as a single continuous process, missing important phase differences. This paper proposes segmented regression to better capture these distinct characteristics for accurate fault detection. The focus is on detecting voltage deviations caused by internal short circuits, external short circuits, and capacity degradation, which are primary indicators of battery faults. Firstly, data from real electric vehicles, operating under normal and faulty conditions, is collected over a period of 18 months. Secondly, the segmented regression method is utilized to segment the data based on the charging and discharging cycles and capture potential dependencies in battery behavior within each cycle. Thirdly, an optimized gated recurrent unit network is developed and integrated with the segmented regression to enable accurate cell voltage estimation. Lastly, an adaptive threshold algorithm is proposed to integrate driving behavior and environmental factors into a Gaussian process regression model. The integrated model dynamically estimates the normal fluctuation range of battery cell voltages for fault detection. The effectiveness of the proposed method is validated on a comprehensive dataset, achieving superior accuracy with values of 99.803% and 99.507% during the charging and discharging phases, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jessie完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
didiaonn完成签到,获得积分10
4秒前
LWWW12完成签到,获得积分10
4秒前
eric888应助科研通管家采纳,获得10
4秒前
SJJ应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
聪明凡之应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
王w应助科研通管家采纳,获得10
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得30
4秒前
王w应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
eric888应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
SJJ应助科研通管家采纳,获得10
5秒前
5秒前
yang完成签到,获得积分10
6秒前
Agu完成签到,获得积分10
7秒前
求助人员发布了新的文献求助10
8秒前
徐立涛发布了新的文献求助10
10秒前
www发布了新的文献求助10
10秒前
meili完成签到,获得积分10
13秒前
格拉希尔完成签到,获得积分10
13秒前
阔达的马里奥完成签到 ,获得积分10
15秒前
abcd_1067完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
诗梦完成签到,获得积分10
17秒前
姬鲁宁完成签到 ,获得积分10
18秒前
www完成签到,获得积分10
18秒前
18秒前
风趣秋白完成签到,获得积分0
19秒前
20秒前
CN1681681发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604083
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856973
捐赠科研通 4696430
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851