Fault detection for Li-ion batteries of electric vehicles with segmented regression method

电池(电) 计算机科学 断层(地质) 电压 故障检测与隔离 可靠性(半导体) 过程(计算) 回归 回归分析 可靠性工程 航程(航空) 实时计算 汽车工程 人工智能 工程类 机器学习 统计 电气工程 功率(物理) 数学 执行机构 航空航天工程 地震学 地质学 物理 操作系统 量子力学
作者
Muaaz Bin Kaleem,Yun Zhou,Jiang Fu,Zhijun Liu,Heng Li
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-82960-0
摘要

Electric vehicles are increasingly popular for their environmental benefits and cost savings, but the reliability and safety of their lithium-ion batteries are critical concerns. Current regression methods for battery fault detection often analyze charging and discharging as a single continuous process, missing important phase differences. This paper proposes segmented regression to better capture these distinct characteristics for accurate fault detection. The focus is on detecting voltage deviations caused by internal short circuits, external short circuits, and capacity degradation, which are primary indicators of battery faults. Firstly, data from real electric vehicles, operating under normal and faulty conditions, is collected over a period of 18 months. Secondly, the segmented regression method is utilized to segment the data based on the charging and discharging cycles and capture potential dependencies in battery behavior within each cycle. Thirdly, an optimized gated recurrent unit network is developed and integrated with the segmented regression to enable accurate cell voltage estimation. Lastly, an adaptive threshold algorithm is proposed to integrate driving behavior and environmental factors into a Gaussian process regression model. The integrated model dynamically estimates the normal fluctuation range of battery cell voltages for fault detection. The effectiveness of the proposed method is validated on a comprehensive dataset, achieving superior accuracy with values of 99.803% and 99.507% during the charging and discharging phases, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈_完成签到,获得积分10
1秒前
深情海秋完成签到,获得积分10
1秒前
2秒前
星辰大海应助Sthwrong采纳,获得10
2秒前
wang发布了新的文献求助10
3秒前
付小蓉发布了新的文献求助30
3秒前
飘逸果汁完成签到,获得积分10
3秒前
聪明煎蛋完成签到,获得积分10
4秒前
4秒前
852应助陳某采纳,获得30
5秒前
坚强的翠霜完成签到,获得积分10
5秒前
5秒前
震动的强炫完成签到,获得积分10
6秒前
6秒前
神外第一刀完成签到 ,获得积分10
6秒前
6秒前
6秒前
CCY发布了新的文献求助10
7秒前
林药师发布了新的文献求助10
7秒前
8秒前
一手灵魂完成签到,获得积分10
8秒前
8秒前
ThomasZ完成签到,获得积分10
8秒前
jhih完成签到,获得积分10
8秒前
王士钰完成签到,获得积分10
8秒前
毛毛完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
心绿新绿完成签到,获得积分10
10秒前
10秒前
科研小白发布了新的文献求助10
10秒前
fanyy完成签到,获得积分10
10秒前
起床了吗发布了新的文献求助30
11秒前
11秒前
山山而川发布了新的文献求助20
11秒前
从容道罡完成签到,获得积分10
12秒前
Emma发布了新的文献求助10
12秒前
元元发布了新的文献求助10
12秒前
小蘑菇应助呆萌的源智采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904