Fault detection for Li-ion batteries of electric vehicles with segmented regression method

电池(电) 计算机科学 断层(地质) 电压 故障检测与隔离 可靠性(半导体) 过程(计算) 回归 回归分析 可靠性工程 航程(航空) 实时计算 汽车工程 人工智能 工程类 机器学习 统计 电气工程 功率(物理) 数学 执行机构 航空航天工程 地震学 地质学 物理 操作系统 量子力学
作者
Muaaz Bin Kaleem,Yun Zhou,Jiang Fu,Zhijun Liu,Heng Li
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-82960-0
摘要

Electric vehicles are increasingly popular for their environmental benefits and cost savings, but the reliability and safety of their lithium-ion batteries are critical concerns. Current regression methods for battery fault detection often analyze charging and discharging as a single continuous process, missing important phase differences. This paper proposes segmented regression to better capture these distinct characteristics for accurate fault detection. The focus is on detecting voltage deviations caused by internal short circuits, external short circuits, and capacity degradation, which are primary indicators of battery faults. Firstly, data from real electric vehicles, operating under normal and faulty conditions, is collected over a period of 18 months. Secondly, the segmented regression method is utilized to segment the data based on the charging and discharging cycles and capture potential dependencies in battery behavior within each cycle. Thirdly, an optimized gated recurrent unit network is developed and integrated with the segmented regression to enable accurate cell voltage estimation. Lastly, an adaptive threshold algorithm is proposed to integrate driving behavior and environmental factors into a Gaussian process regression model. The integrated model dynamically estimates the normal fluctuation range of battery cell voltages for fault detection. The effectiveness of the proposed method is validated on a comprehensive dataset, achieving superior accuracy with values of 99.803% and 99.507% during the charging and discharging phases, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
henry发布了新的文献求助10
刚刚
PowerQ发布了新的文献求助10
刚刚
慕青应助马凯凯采纳,获得10
刚刚
刚刚
刚刚
凌雪柯发布了新的文献求助10
1秒前
沙心发布了新的文献求助10
1秒前
开朗的板凳完成签到,获得积分10
1秒前
ijn发布了新的文献求助10
1秒前
英俊白莲发布了新的文献求助10
1秒前
1秒前
111发布了新的文献求助20
2秒前
2秒前
3秒前
果果完成签到,获得积分20
3秒前
万能图书馆应助henry采纳,获得10
3秒前
3秒前
今后应助樊念烟采纳,获得10
3秒前
苏苏发布了新的文献求助10
3秒前
4秒前
科研通AI5应助chemier027采纳,获得10
4秒前
BAEKHYUN完成签到 ,获得积分10
4秒前
4秒前
无名完成签到,获得积分10
4秒前
5秒前
清脆的秋寒完成签到,获得积分10
5秒前
xxxhhaoxxx完成签到,获得积分10
5秒前
sstargazer发布了新的文献求助10
5秒前
yjzzz完成签到,获得积分10
6秒前
7秒前
bdJ发布了新的文献求助10
7秒前
BAEKHYUN关注了科研通微信公众号
7秒前
Dan1mple完成签到 ,获得积分10
7秒前
庾灭男发布了新的文献求助10
8秒前
小不点完成签到,获得积分10
8秒前
8秒前
沙雕荷包蛋完成签到,获得积分10
8秒前
所所应助chl采纳,获得10
8秒前
8秒前
情怀应助英勇的半兰采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794