A Method for Detecting Small Target Weld Defects Based on Feature Reorganization Network

增采样 计算机科学 最小边界框 特征(语言学) 跳跃式监视 过程(计算) 人工智能 特征提取 卷积(计算机科学) 焊接 模式识别(心理学) 骨干网 人工神经网络 图像(数学) 工程类 机械工程 操作系统 哲学 语言学 计算机网络
作者
Xiaoxia Yu,Yu Zhang,Kangqu Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada053
摘要

Abstract In the process of intelligent weld seam inspection, small weld seams are often prone to false detections or omissions. Existing methods simply concatenate feature segments during the upsampling process without analyzing the importance of each feature segment, leaving room for further improvement in detection accuracy. To address these issues, this study proposes a Feature Reorganization Network (FRNet) for detecting small target weld defects. First, the C2f-Faster-EMA feature extraction module is designed using GSConv convolution, and the LSKNet is introduced to dynamically adjust the receptive field of the backbone in the Backbone section, enhancing the model's ability to extract small target features. Then, a lightweight CARAFE upsampling module is designed in the neck network, which retains more detailed information through feature reorganization and feature expansion, and introduces the parameter-free attention mechanism SimAM to fully capture the contextual information of small targets, thereby enhancing the proposed model's ability to extract small target features. Finally, the GIoU boundary loss function is used to improve the network's bounding box regression performance, achieving intelligent detection of small target weld defects. Experimental results show that the proposed method achieves a mean average precision, parameter count, and computation volume of 85.6%, 2.5M, and 7.0G, respectively, for weld defect detection, outperforming the comparison models and meeting the requirements of practical engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
辛巴先生完成签到,获得积分10
刚刚
木桶人plus发布了新的文献求助10
1秒前
英姑应助哈哈哈采纳,获得10
1秒前
小木虫完成签到,获得积分10
1秒前
欢呼的初蓝完成签到,获得积分10
1秒前
研研完成签到,获得积分10
1秒前
陈腿毛完成签到,获得积分10
2秒前
整齐泥猴桃完成签到 ,获得积分10
2秒前
3秒前
3秒前
柳絮发布了新的文献求助10
4秒前
西登完成签到 ,获得积分10
4秒前
charint完成签到,获得积分10
4秒前
向阳花完成签到,获得积分10
4秒前
lt2完成签到,获得积分10
5秒前
烟花应助无心的文龙采纳,获得10
5秒前
江南第八发布了新的文献求助10
5秒前
李志明完成签到,获得积分10
6秒前
子车茗应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
无知的h应助科研通管家采纳,获得10
6秒前
6秒前
邓佳鑫Alan应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
玉玉鼠完成签到,获得积分10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
159完成签到 ,获得积分10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
Ian完成签到,获得积分10
6秒前
jiali应助科研通管家采纳,获得10
6秒前
6秒前
CR7应助科研通管家采纳,获得20
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
CR7应助科研通管家采纳,获得20
7秒前
劳恩特应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
无知的h应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413855
求助须知:如何正确求助?哪些是违规求助? 4530759
关于积分的说明 14124756
捐赠科研通 4445980
什么是DOI,文献DOI怎么找? 2439329
邀请新用户注册赠送积分活动 1431435
关于科研通互助平台的介绍 1409123