A Method for Detecting Small Target Weld Defects Based on Feature Reorganization Network

增采样 计算机科学 最小边界框 特征(语言学) 跳跃式监视 过程(计算) 人工智能 特征提取 卷积(计算机科学) 焊接 模式识别(心理学) 骨干网 人工神经网络 图像(数学) 工程类 哲学 语言学 机械工程 计算机网络 操作系统
作者
Xiaoxia Yu,Yu Zhang,Kangqu Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada053
摘要

Abstract In the process of intelligent weld seam inspection, small weld seams are often prone to false detections or omissions. Existing methods simply concatenate feature segments during the upsampling process without analyzing the importance of each feature segment, leaving room for further improvement in detection accuracy. To address these issues, this study proposes a Feature Reorganization Network (FRNet) for detecting small target weld defects. First, the C2f-Faster-EMA feature extraction module is designed using GSConv convolution, and the LSKNet is introduced to dynamically adjust the receptive field of the backbone in the Backbone section, enhancing the model's ability to extract small target features. Then, a lightweight CARAFE upsampling module is designed in the neck network, which retains more detailed information through feature reorganization and feature expansion, and introduces the parameter-free attention mechanism SimAM to fully capture the contextual information of small targets, thereby enhancing the proposed model's ability to extract small target features. Finally, the GIoU boundary loss function is used to improve the network's bounding box regression performance, achieving intelligent detection of small target weld defects. Experimental results show that the proposed method achieves a mean average precision, parameter count, and computation volume of 85.6%, 2.5M, and 7.0G, respectively, for weld defect detection, outperforming the comparison models and meeting the requirements of practical engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
biofresh完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
Brooks发布了新的文献求助10
1秒前
up_water发布了新的文献求助10
1秒前
XP416完成签到,获得积分10
1秒前
zhl完成签到,获得积分20
1秒前
2秒前
怡然云朵发布了新的文献求助10
2秒前
无花果应助害羞书易采纳,获得10
2秒前
淡泊宁静完成签到,获得积分10
2秒前
朱建强发布了新的文献求助10
3秒前
WHY完成签到,获得积分10
3秒前
泡芙发布了新的文献求助10
3秒前
3秒前
3秒前
小二郎应助XLL小绿绿采纳,获得10
4秒前
打打应助ci采纳,获得10
4秒前
123完成签到,获得积分10
4秒前
Zhang完成签到,获得积分10
4秒前
狗东西完成签到,获得积分10
5秒前
专注一行青文完成签到,获得积分20
5秒前
6秒前
叶子宁完成签到,获得积分10
6秒前
玛卡巴卡完成签到,获得积分10
7秒前
清脆的靖仇应助fxb采纳,获得10
7秒前
SciGPT应助yuhui采纳,获得10
7秒前
中级奥术师完成签到,获得积分10
7秒前
7秒前
风辰发布了新的文献求助10
8秒前
SATone完成签到,获得积分10
8秒前
8秒前
majf发布了新的文献求助50
8秒前
orixero应助祥子的骆驼采纳,获得10
9秒前
小巧丹烟完成签到,获得积分10
9秒前
fwsfs发布了新的文献求助10
9秒前
暴龙战士图图完成签到,获得积分10
9秒前
zty完成签到,获得积分10
9秒前
renjiu完成签到,获得积分10
10秒前
英姑应助赵瑾采纳,获得10
10秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118