激进的
发光
超分子化学
光化学
超分子手性
化学
材料科学
结晶学
光电子学
有机化学
晶体结构
作者
Lukang Ji,Jinqi Li,Tingting Meng,Zujian Li,Hua‐Jie Zhu,Guanghui Ouyang,Minghua Liu
标识
DOI:10.1002/smtd.202400824
摘要
Abstract The realization of persistent luminescence and in particular circularly polarized luminescence (CPL) of organic radicals remains a challenge due to their sensitivity to oxygen at ambient conditions and elusive excited state chirality control. Here, it is reported that UV‐irradiation on a supramolecular gel from a chiral triarylamine derivative, TPA‐Ala, led to the formation of luminescent radicals with bright CPL. TPA‐Ala can form an organogel in chloroform with blue emission and supramolecular chirality as demonstrated by both CD and CPL signals. Upon UV 365 nm irradiation, an emission color change from blue to cyan is observed due to the formation of photo‐induced radicals. Interestingly, it is found that the supramolecular gel radicals showed stable luminescence with a lifetime ≈ 10 days in dark environments and inverted CPL, which represents a scarce example with persistent CPL from doublet‐state due to oxygen isolation ability of the gel network. Furthermore, doping a guest dye, Rhodamine B (RhB), into the supramolecular gel (RhB/TPA‐Ala = 30% in molar ratio) successfully obtained a transient white‐light CPL through the superposition of photo‐induced radical and guest dye emissions. This work provides a useful methodology for the fabrication of radical‐based CPL materials via a supramolecular assembly approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI