亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved sandcat swarm optimization algorithm for solving global optimum problems

计算机科学 数学优化 群体行为 多群优化 元启发式 优化算法 群体智能 最优化问题 算法 粒子群优化 数学 人工智能
作者
Heming Jia,Jinrui Zhang,Honghua Rao,Laith Abualigah
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:58 (1) 被引量:9
标识
DOI:10.1007/s10462-024-10986-x
摘要

The sand cat swarm optimization algorithm (SCSO) is a metaheuristic algorithm proposed by Amir Seyyedabbasi et al. SCSO algorithm mimics the predatory behavior of sand cats, which gives the algorithm a strong optimized performance. However, as the number of iterations of the algorithm increases, the moving efficiency of the sand cat decreases, resulting in the decline of search ability. The convergence speed of the algorithm gradually decreases, and it is easy to fall into local optimum, and it is difficult to find a better solution. In order to improve the search and movement efficiency of the sand cat, and enhance the global optimization ability and convergence performance of the algorithm, an improved sand cat Swarm Optimization (ISCSO) algorithm was proposed. In ISCSO algorithm, we propose a low-frequency noise search strategy and a spiral contraction walking strategy according to the habit of sand cat, and add random opposition-based learning and restart strategy. The frequency factor was used to control the search direction of the sand cat, and the spiral contraction hunting was carried out, which effectively improved the randomness of the population, expanded the search range of the algorithm, enhanced the moving efficiency of the sand cat, and accelerated the convergence speed of the algorithm. We use 23 standard benchmark functions and IEEE CEC2014 benchmark functions to compare ISCSO with 10 algorithms, and prove the effectiveness of the improved strategy. Finally, ISCSO was evaluated using five constrained engineering design problems. In the results of these problems, using ISCSO has 3.08%, 0.23%, 0.37%, 22.34%, 1.38% improvement compared with the original algorithm respectively, which proves the effectiveness of the improved strategy in practical application problems. The source code website for ISCSO is https://github.com/Ruiruiz30/ISCSO-s-code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚身影完成签到,获得积分10
刚刚
流苏完成签到,获得积分0
3秒前
流苏2完成签到,获得积分10
7秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
shhoing应助科研通管家采纳,获得10
9秒前
9秒前
15秒前
lyncee发布了新的文献求助50
20秒前
doc.wei发布了新的文献求助10
21秒前
JamesPei应助张123采纳,获得30
22秒前
31秒前
张123完成签到,获得积分20
32秒前
张123发布了新的文献求助30
36秒前
CodeCraft应助catherine采纳,获得10
40秒前
49秒前
52秒前
李健的小迷弟应助余婷采纳,获得10
52秒前
52秒前
等待若山发布了新的文献求助10
53秒前
doc.wei完成签到 ,获得积分20
57秒前
waomi发布了新的文献求助10
59秒前
CipherSage应助咕噜咕噜采纳,获得30
1分钟前
小奋青完成签到 ,获得积分10
1分钟前
1分钟前
余婷发布了新的文献求助10
1分钟前
1分钟前
catherine发布了新的文献求助10
1分钟前
田様应助杨柳9203采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
2分钟前
苹果小玉发布了新的文献求助10
2分钟前
2分钟前
fan发布了新的文献求助30
2分钟前
2分钟前
杨柳9203发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543167
求助须知:如何正确求助?哪些是违规求助? 4629339
关于积分的说明 14611117
捐赠科研通 4570598
什么是DOI,文献DOI怎么找? 2505827
邀请新用户注册赠送积分活动 1483084
关于科研通互助平台的介绍 1454407