Improved sandcat swarm optimization algorithm for solving global optimum problems

计算机科学 数学优化 群体行为 多群优化 元启发式 优化算法 群体智能 最优化问题 算法 粒子群优化 数学 人工智能
作者
Heming Jia,Jinrui Zhang,Honghua Rao,Laith Abualigah
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:58 (1) 被引量:1
标识
DOI:10.1007/s10462-024-10986-x
摘要

The sand cat swarm optimization algorithm (SCSO) is a metaheuristic algorithm proposed by Amir Seyyedabbasi et al. SCSO algorithm mimics the predatory behavior of sand cats, which gives the algorithm a strong optimized performance. However, as the number of iterations of the algorithm increases, the moving efficiency of the sand cat decreases, resulting in the decline of search ability. The convergence speed of the algorithm gradually decreases, and it is easy to fall into local optimum, and it is difficult to find a better solution. In order to improve the search and movement efficiency of the sand cat, and enhance the global optimization ability and convergence performance of the algorithm, an improved sand cat Swarm Optimization (ISCSO) algorithm was proposed. In ISCSO algorithm, we propose a low-frequency noise search strategy and a spiral contraction walking strategy according to the habit of sand cat, and add random opposition-based learning and restart strategy. The frequency factor was used to control the search direction of the sand cat, and the spiral contraction hunting was carried out, which effectively improved the randomness of the population, expanded the search range of the algorithm, enhanced the moving efficiency of the sand cat, and accelerated the convergence speed of the algorithm. We use 23 standard benchmark functions and IEEE CEC2014 benchmark functions to compare ISCSO with 10 algorithms, and prove the effectiveness of the improved strategy. Finally, ISCSO was evaluated using five constrained engineering design problems. In the results of these problems, using ISCSO has 3.08%, 0.23%, 0.37%, 22.34%, 1.38% improvement compared with the original algorithm respectively, which proves the effectiveness of the improved strategy in practical application problems. The source code website for ISCSO is https://github.com/Ruiruiz30/ISCSO-s-code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
帅气鹭洋发布了新的文献求助10
1秒前
夏昼发布了新的文献求助10
1秒前
cometx完成签到 ,获得积分10
2秒前
路之遥兮发布了新的文献求助10
2秒前
yy发布了新的文献求助10
2秒前
2秒前
852应助100采纳,获得10
2秒前
爱静静应助cruise采纳,获得10
3秒前
Singularity应助cruise采纳,获得10
3秒前
VDC应助cruise采纳,获得30
3秒前
3秒前
3秒前
了晨完成签到 ,获得积分10
4秒前
小xy完成签到,获得积分10
4秒前
5秒前
小昼完成签到 ,获得积分10
5秒前
尊敬的完成签到,获得积分10
6秒前
6秒前
整齐海秋完成签到,获得积分10
6秒前
6秒前
善学以致用应助白榆采纳,获得10
6秒前
JamesPei应助易达采纳,获得10
7秒前
7秒前
7秒前
圣晟胜发布了新的文献求助10
7秒前
xx发布了新的文献求助10
8秒前
忧郁觅柔完成签到 ,获得积分10
8秒前
追寻夜香发布了新的文献求助10
8秒前
昊康好完成签到,获得积分10
8秒前
9秒前
yy完成签到,获得积分10
9秒前
10秒前
缓慢天抒完成签到 ,获得积分10
10秒前
科研通AI5应助路之遥兮采纳,获得10
10秒前
爱睡觉的亮亮完成签到,获得积分10
11秒前
圈圈发布了新的文献求助10
11秒前
顾矜应助无聊先知采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678