Improved sandcat swarm optimization algorithm for solving global optimum problems

计算机科学 数学优化 群体行为 多群优化 元启发式 优化算法 群体智能 最优化问题 算法 粒子群优化 数学 人工智能
作者
Heming Jia,Jinrui Zhang,Honghua Rao,Laith Abualigah
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:58 (1) 被引量:1
标识
DOI:10.1007/s10462-024-10986-x
摘要

The sand cat swarm optimization algorithm (SCSO) is a metaheuristic algorithm proposed by Amir Seyyedabbasi et al. SCSO algorithm mimics the predatory behavior of sand cats, which gives the algorithm a strong optimized performance. However, as the number of iterations of the algorithm increases, the moving efficiency of the sand cat decreases, resulting in the decline of search ability. The convergence speed of the algorithm gradually decreases, and it is easy to fall into local optimum, and it is difficult to find a better solution. In order to improve the search and movement efficiency of the sand cat, and enhance the global optimization ability and convergence performance of the algorithm, an improved sand cat Swarm Optimization (ISCSO) algorithm was proposed. In ISCSO algorithm, we propose a low-frequency noise search strategy and a spiral contraction walking strategy according to the habit of sand cat, and add random opposition-based learning and restart strategy. The frequency factor was used to control the search direction of the sand cat, and the spiral contraction hunting was carried out, which effectively improved the randomness of the population, expanded the search range of the algorithm, enhanced the moving efficiency of the sand cat, and accelerated the convergence speed of the algorithm. We use 23 standard benchmark functions and IEEE CEC2014 benchmark functions to compare ISCSO with 10 algorithms, and prove the effectiveness of the improved strategy. Finally, ISCSO was evaluated using five constrained engineering design problems. In the results of these problems, using ISCSO has 3.08%, 0.23%, 0.37%, 22.34%, 1.38% improvement compared with the original algorithm respectively, which proves the effectiveness of the improved strategy in practical application problems. The source code website for ISCSO is https://github.com/Ruiruiz30/ISCSO-s-code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
只如初发布了新的文献求助10
刚刚
kirirto完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
黄紫红蓝发布了新的文献求助10
2秒前
3秒前
3秒前
anna1992发布了新的文献求助10
4秒前
4秒前
5秒前
cquank发布了新的文献求助10
5秒前
SYLH应助dongli6536采纳,获得10
5秒前
water完成签到,获得积分10
6秒前
上官若男应助shine采纳,获得10
6秒前
战战兢兢完成签到 ,获得积分10
6秒前
6秒前
Shinewei完成签到,获得积分10
6秒前
开心蘑菇应助自由的无色采纳,获得30
7秒前
fff完成签到,获得积分10
7秒前
8秒前
小鱼医生发布了新的文献求助10
8秒前
jyu发布了新的文献求助10
8秒前
9秒前
9秒前
xiejinhui发布了新的文献求助10
10秒前
kiki完成签到 ,获得积分10
10秒前
铁甲小宝发布了新的文献求助10
10秒前
Shinewei发布了新的文献求助10
10秒前
11秒前
11秒前
久9完成签到 ,获得积分10
13秒前
13秒前
cquank完成签到,获得积分10
14秒前
ZoraZeng完成签到,获得积分10
14秒前
14秒前
虚心的寒梦完成签到,获得积分10
15秒前
炫哥IRIS完成签到,获得积分10
15秒前
牧童完成签到,获得积分10
15秒前
HenryXiao发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650