亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved sandcat swarm optimization algorithm for solving global optimum problems

计算机科学 数学优化 群体行为 多群优化 元启发式 优化算法 群体智能 最优化问题 算法 粒子群优化 数学 人工智能
作者
Heming Jia,Jinrui Zhang,Honghua Rao,Laith Abualigah
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:58 (1) 被引量:1
标识
DOI:10.1007/s10462-024-10986-x
摘要

The sand cat swarm optimization algorithm (SCSO) is a metaheuristic algorithm proposed by Amir Seyyedabbasi et al. SCSO algorithm mimics the predatory behavior of sand cats, which gives the algorithm a strong optimized performance. However, as the number of iterations of the algorithm increases, the moving efficiency of the sand cat decreases, resulting in the decline of search ability. The convergence speed of the algorithm gradually decreases, and it is easy to fall into local optimum, and it is difficult to find a better solution. In order to improve the search and movement efficiency of the sand cat, and enhance the global optimization ability and convergence performance of the algorithm, an improved sand cat Swarm Optimization (ISCSO) algorithm was proposed. In ISCSO algorithm, we propose a low-frequency noise search strategy and a spiral contraction walking strategy according to the habit of sand cat, and add random opposition-based learning and restart strategy. The frequency factor was used to control the search direction of the sand cat, and the spiral contraction hunting was carried out, which effectively improved the randomness of the population, expanded the search range of the algorithm, enhanced the moving efficiency of the sand cat, and accelerated the convergence speed of the algorithm. We use 23 standard benchmark functions and IEEE CEC2014 benchmark functions to compare ISCSO with 10 algorithms, and prove the effectiveness of the improved strategy. Finally, ISCSO was evaluated using five constrained engineering design problems. In the results of these problems, using ISCSO has 3.08%, 0.23%, 0.37%, 22.34%, 1.38% improvement compared with the original algorithm respectively, which proves the effectiveness of the improved strategy in practical application problems. The source code website for ISCSO is https://github.com/Ruiruiz30/ISCSO-s-code.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
乐乐应助舒服的觅夏采纳,获得20
16秒前
20秒前
31秒前
33秒前
41秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
57秒前
1分钟前
1分钟前
1分钟前
1分钟前
薄衫发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
薄衫完成签到,获得积分10
1分钟前
1分钟前
1分钟前
qwe发布了新的文献求助10
2分钟前
2分钟前
2分钟前
燕鹏发布了新的文献求助10
2分钟前
2分钟前
等待的剑身完成签到,获得积分10
2分钟前
2分钟前
2分钟前
qwe完成签到,获得积分20
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
欧阳发布了新的文献求助10
3分钟前
uko完成签到 ,获得积分10
3分钟前
王子娇完成签到 ,获得积分10
3分钟前
3分钟前
缓慢傥发布了新的文献求助30
4分钟前
完美世界应助芷毓_Tian采纳,获得10
4分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335274
求助须知:如何正确求助?哪些是违规求助? 2964488
关于积分的说明 8613967
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447329
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974