An Overview of the Genes and Biomarkers in Alzheimer’s Disease

阿尔茨海默病 疾病 神经科学 基因 生物 计算生物学 医学 遗传学 病理
作者
Hari Krishnan Krishnamurthy,Vasanth Jayaraman,Karthik Krishna,Tianhao Wang,Kang Bei,Chithra Changalath,John J. Rajasekaran
出处
期刊:Ageing Research Reviews [Elsevier]
卷期号:: 102599-102599
标识
DOI:10.1016/j.arr.2024.102599
摘要

Alzheimer's disease (AD) is the most common type of dementia and neurodegenerative disease characterized by neurofibrillary tangles (NFTs) and amyloid plaque. Familial AD is caused by mutations in the APP, PSEN1, and PSEN2 genes and these mutations result in the early onset of the disease. Sporadic AD usually affects older adults over the age of 65 years and is, therefore classified as late-onset AD (LOAD). Several risk factors associated with LOAD including the APOE gene have been identified. Moreover, GWAS studies have identified a wide array of genes and polymorphisms that are associated with LOAD risk. Currently, the diagnosis of AD involves the evaluation of memory and personality changes, cognitive impairment, and medical and family history to rule out other diseases. Laboratory tests to assess the biomarkers in the body fluids as well as MRI, CT, and PET scans to analyze the presence of plaques and NFTs are also included in the diagnosis of AD. It is important to diagnose AD before the onset of clinical symptoms, i.e. during the preclinical stage, to delay the progression and for better management of the disease. Research has been conducted to identify biomarkers of AD in the CSF, serum, saliva, and urine during the preclinical stage. Current research has identified several biomarkers and potential biomarkers in the body fluids that enhance diagnostic accuracy. Aside from genetics, other factors such as diet, physical activity, and lifestyle factors may influence the risk of developing AD. Clinical trials are underway to find potential biomarkers, diagnostic measures, and treatments for AD mainly in the preclinical stage. This review provides an overview of the genes and biomarkers of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢谢不会谢完成签到 ,获得积分10
2秒前
1111发布了新的文献求助10
2秒前
4秒前
4秒前
夕寸完成签到,获得积分10
4秒前
Shinkai39完成签到,获得积分10
4秒前
6秒前
xiaohongmao发布了新的文献求助10
7秒前
科研通AI5应助虚幻的不评采纳,获得10
7秒前
7秒前
xiaoxiaoqiu发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
1111完成签到,获得积分10
10秒前
Ch_7发布了新的文献求助10
10秒前
10秒前
l蓝石发布了新的文献求助10
10秒前
jinhuanghuiyu发布了新的文献求助10
11秒前
上官若男应助远方采纳,获得10
11秒前
古果发布了新的文献求助10
12秒前
12秒前
ziyuwang发布了新的文献求助10
12秒前
12秒前
迅速若魔发布了新的文献求助10
13秒前
xiaoxia发布了新的文献求助10
13秒前
cherry bomb完成签到,获得积分10
14秒前
ding发布了新的文献求助30
14秒前
asapshaozhu发布了新的文献求助10
14秒前
14秒前
独特的绯发布了新的文献求助10
16秒前
魈玖发布了新的文献求助10
16秒前
17秒前
wyt发布了新的文献求助10
17秒前
迷人若冰完成签到,获得积分20
18秒前
共享精神应助仁爱的荷花采纳,获得10
18秒前
mmm发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3574241
求助须知:如何正确求助?哪些是违规求助? 3143968
关于积分的说明 9454615
捐赠科研通 2845545
什么是DOI,文献DOI怎么找? 1564367
邀请新用户注册赠送积分活动 732224
科研通“疑难数据库(出版商)”最低求助积分说明 718968