已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An adaptive hybrid deep learning-based reliability assessment framework for damping track system considering multi-random variables

替代模型 工程类 可靠性(半导体) 蒙特卡罗方法 非线性系统 计算机科学 算法 机器学习 数学 功率(物理) 统计 物理 量子力学
作者
Fang Cheng,Hui Liu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:208: 110981-110981 被引量:3
标识
DOI:10.1016/j.ymssp.2023.110981
摘要

Reliability assessment is essential in the design and management of rail transit system (RTS), with a heightened focus on damping tracks that feature low-stiffness structures and various uncertainties. However, existing research on RTS has notable gaps: one is the unexplored nonlinear track irregularities in surrogate model, while the other is the significant computational burden of current reliability analysis. Therefore, Firstly, based on a database acquired from simulations of rigid-flexible coupling dynamic models, a hybrid deep learning (DL) surrogate model is developed and trained. Notably, it accommodates both time-series and feature parameters data as inputs, and integrates a novel algorithm featuring slide window with variational decomposition mode-sample entropy, optimization algorithm and adaptive learning strategy (AS). Subsequently, an advanced reliability assessment framework is proposed, utilizing AS hybrid DL-based Probability Density Evolution Method (PDEM), which thoughtfully designed to analyze the two aforementioned categories of random variables and then applied to a train-steel spring floating slab track. Experimental studies show the proposed surrogate model effectively and robustly predicts four safety metrics, with each component's excellence confirmed. Furthermore, this framework shows higher accuracy than the Monte Carlo Method and enhances computational efficiency by 10 ∼ 30 times compared to traditional mechanism-based PDEM. Consequently, reliability assessments indicate values of 0.9312 and 0.9214 for wheel-load reduction rate and rail displacement, respectively, with other metrics showing zero safety hazards. Findings of this study have practical applicability in the field of RTS design and maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
man完成签到,获得积分10
1秒前
安详的书本完成签到 ,获得积分10
1秒前
2秒前
我住隔壁我姓王完成签到,获得积分10
2秒前
大男发布了新的文献求助10
4秒前
5秒前
5秒前
高高的丹雪完成签到 ,获得积分10
5秒前
晴枫3648完成签到,获得积分20
6秒前
7秒前
master-f完成签到 ,获得积分10
8秒前
Johnpick应助swordlee采纳,获得10
9秒前
wanci应助DDS采纳,获得10
9秒前
JamesPei应助CNS天天有采纳,获得10
11秒前
科研通AI5应助彩色飞瑶采纳,获得10
11秒前
冷傲新柔发布了新的文献求助10
11秒前
是真灵还是机灵完成签到 ,获得积分10
12秒前
Serena完成签到,获得积分10
13秒前
Hasee完成签到 ,获得积分0
13秒前
没有查不到的文献完成签到 ,获得积分10
14秒前
豆花完成签到,获得积分10
14秒前
端庄半凡完成签到 ,获得积分10
15秒前
大男完成签到,获得积分10
16秒前
Echo完成签到,获得积分10
17秒前
ewjncjencj发布了新的文献求助10
17秒前
17秒前
deswin完成签到 ,获得积分10
18秒前
洛神完成签到 ,获得积分10
18秒前
21秒前
Serena发布了新的文献求助10
22秒前
医路成功完成签到,获得积分10
23秒前
m赤子心完成签到 ,获得积分10
24秒前
CNS天天有完成签到,获得积分20
25秒前
XiaoYuanLabo关注了科研通微信公众号
27秒前
冷傲的道罡完成签到,获得积分10
27秒前
Otter完成签到,获得积分10
27秒前
梦晶箐妍发布了新的文献求助10
28秒前
宋灵竹完成签到,获得积分10
28秒前
Alan完成签到 ,获得积分10
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555495
求助须知:如何正确求助?哪些是违规求助? 3131253
关于积分的说明 9390315
捐赠科研通 2830850
什么是DOI,文献DOI怎么找? 1556155
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715794