Correlation between intraosseous thermal change and drilling impulse data during osteotomy within autonomous dental implant robotic system: An in vitro study

脉冲(物理) 演习 钻探 线性回归 皮尔逊积矩相关系数 机械加工 计算机科学 人工神经网络 生物医学工程 模拟 人工智能 数学 工程类 机械工程 机器学习 统计 物理 量子力学
作者
Ruifeng Zhao,Rui Xie,Nan Ren,Zhiwen Li,Shengrui Zhang,Yuchen Liu,Dong Yu,Anan Yin,Yimin Zhao,Shizhu Bai
出处
期刊:Clinical Oral Implants Research [Wiley]
卷期号:35 (3): 258-267 被引量:10
标识
DOI:10.1111/clr.14222
摘要

Abstract Objectives This study aims at examining the correlation of intraosseous temperature change with drilling impulse data during osteotomy and establishing real‐time temperature prediction models. Materials and Methods A combination of in vitro bovine rib model and Autonomous Dental Implant Robotic System (ADIR) was set up, in which intraosseous temperature and drilling impulse data were measured using an infrared camera and a six‐axis force/torque sensor respectively. A total of 800 drills with different parameters (e.g., drill diameter, drill wear, drilling speed, and thickness of cortical bone) were experimented, along with an independent test set of 200 drills. Pearson correlation analysis was done for linear relationship. Four machining learning (ML) algorithms (e.g., support vector regression [SVR], ridge regression [RR], extreme gradient boosting [XGboost], and artificial neural network [ANN]) were run for building prediction models. Results By incorporating different parameters, it was found that lower drilling speed, smaller drill diameter, more severe wear, and thicker cortical bone were associated with higher intraosseous temperature changes and longer time exposure and were accompanied with alterations in drilling impulse data. Pearson correlation analysis further identified highly linear correlation between drilling impulse data and thermal changes. Finally, four ML prediction models were established, among which XGboost model showed the best performance with the minimum error measurements in test set. Conclusion The proof‐of‐concept study highlighted close correlation of drilling impulse data with intraosseous temperature change during osteotomy. The ML prediction models may inspire future improvement on prevention of thermal bone injury and intelligent design of robot‐assisted implant surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zx_1993应助典雅涵瑶采纳,获得50
刚刚
乐乐应助Qing采纳,获得10
刚刚
四叶草哦完成签到,获得积分10
1秒前
宋浩奇发布了新的文献求助10
1秒前
Hello应助洁净诗槐采纳,获得10
2秒前
z荩完成签到,获得积分20
2秒前
虚拟的秋寒完成签到,获得积分10
2秒前
2秒前
111发布了新的文献求助10
3秒前
qpisuo发布了新的文献求助10
4秒前
deep完成签到,获得积分20
4秒前
5秒前
5秒前
浮游应助Zhengkeke采纳,获得10
6秒前
orixero应助云山采纳,获得10
7秒前
7秒前
7秒前
SciGPT应助chenping_an采纳,获得10
7秒前
8秒前
Yi羿完成签到 ,获得积分10
8秒前
8秒前
共享精神应助fkhuny采纳,获得10
8秒前
SimonShaw完成签到,获得积分10
8秒前
9秒前
cheng完成签到,获得积分20
9秒前
旺仔冰激凌完成签到,获得积分10
9秒前
10秒前
上官若男应助朴素山兰采纳,获得10
10秒前
10秒前
10秒前
huax发布了新的文献求助10
11秒前
行走的sci完成签到,获得积分10
11秒前
ZhS_发布了新的文献求助10
11秒前
111完成签到,获得积分10
12秒前
完美世界应助欣慰语柳采纳,获得10
12秒前
Dvus发布了新的文献求助30
12秒前
12秒前
13秒前
13秒前
前进的小宅熊完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341864
求助须知:如何正确求助?哪些是违规求助? 4477955
关于积分的说明 13937502
捐赠科研通 4374208
什么是DOI,文献DOI怎么找? 2403393
邀请新用户注册赠送积分活动 1396165
关于科研通互助平台的介绍 1368165