Correlation between intraosseous thermal change and drilling impulse data during osteotomy within autonomous dental implant robotic system: An in vitro study

脉冲(物理) 演习 钻探 线性回归 皮尔逊积矩相关系数 机械加工 计算机科学 人工神经网络 生物医学工程 模拟 人工智能 数学 工程类 机械工程 机器学习 统计 物理 量子力学
作者
Ruifeng Zhao,Rui Xie,Nan Ren,Zhiwen Li,Shengrui Zhang,Yuchen Liu,Dong Yu,An‐An Yin,Yimin Zhao,Shizhu Bai
出处
期刊:Clinical Oral Implants Research [Wiley]
卷期号:35 (3): 258-267 被引量:2
标识
DOI:10.1111/clr.14222
摘要

Abstract Objectives This study aims at examining the correlation of intraosseous temperature change with drilling impulse data during osteotomy and establishing real‐time temperature prediction models. Materials and Methods A combination of in vitro bovine rib model and Autonomous Dental Implant Robotic System (ADIR) was set up, in which intraosseous temperature and drilling impulse data were measured using an infrared camera and a six‐axis force/torque sensor respectively. A total of 800 drills with different parameters (e.g., drill diameter, drill wear, drilling speed, and thickness of cortical bone) were experimented, along with an independent test set of 200 drills. Pearson correlation analysis was done for linear relationship. Four machining learning (ML) algorithms (e.g., support vector regression [SVR], ridge regression [RR], extreme gradient boosting [XGboost], and artificial neural network [ANN]) were run for building prediction models. Results By incorporating different parameters, it was found that lower drilling speed, smaller drill diameter, more severe wear, and thicker cortical bone were associated with higher intraosseous temperature changes and longer time exposure and were accompanied with alterations in drilling impulse data. Pearson correlation analysis further identified highly linear correlation between drilling impulse data and thermal changes. Finally, four ML prediction models were established, among which XGboost model showed the best performance with the minimum error measurements in test set. Conclusion The proof‐of‐concept study highlighted close correlation of drilling impulse data with intraosseous temperature change during osteotomy. The ML prediction models may inspire future improvement on prevention of thermal bone injury and intelligent design of robot‐assisted implant surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
舒适怀寒完成签到 ,获得积分10
2秒前
miao应助孙淼采纳,获得20
3秒前
小马甲应助孙淼采纳,获得10
3秒前
8秒前
Jiatu_Li发布了新的文献求助10
8秒前
英吉利25发布了新的文献求助10
12秒前
14秒前
15秒前
CodeCraft应助zzydada采纳,获得20
16秒前
yangL完成签到,获得积分10
16秒前
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
18秒前
Hello应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得50
18秒前
哈哈哈哈发布了新的文献求助10
19秒前
二十又澪完成签到,获得积分10
19秒前
20秒前
yangL发布了新的文献求助10
20秒前
千跃完成签到,获得积分10
22秒前
阿甲发布了新的文献求助10
22秒前
23秒前
隐形曼青应助Jiatu_Li采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533023
关于积分的说明 11260405
捐赠科研通 3272329
什么是DOI,文献DOI怎么找? 1805693
邀请新用户注册赠送积分活动 882626
科研通“疑难数据库(出版商)”最低求助积分说明 809425