Correlation between intraosseous thermal change and drilling impulse data during osteotomy within autonomous dental implant robotic system: An in vitro study

脉冲(物理) 演习 钻探 线性回归 皮尔逊积矩相关系数 机械加工 计算机科学 人工神经网络 生物医学工程 模拟 人工智能 数学 工程类 机械工程 机器学习 统计 物理 量子力学
作者
Ruifeng Zhao,Rui Xie,Nan Ren,Zhiwen Li,Shengrui Zhang,Yuchen Liu,Dong Yu,An‐An Yin,Yimin Zhao,Shizhu Bai
出处
期刊:Clinical Oral Implants Research [Wiley]
卷期号:35 (3): 258-267 被引量:2
标识
DOI:10.1111/clr.14222
摘要

Abstract Objectives This study aims at examining the correlation of intraosseous temperature change with drilling impulse data during osteotomy and establishing real‐time temperature prediction models. Materials and Methods A combination of in vitro bovine rib model and Autonomous Dental Implant Robotic System (ADIR) was set up, in which intraosseous temperature and drilling impulse data were measured using an infrared camera and a six‐axis force/torque sensor respectively. A total of 800 drills with different parameters (e.g., drill diameter, drill wear, drilling speed, and thickness of cortical bone) were experimented, along with an independent test set of 200 drills. Pearson correlation analysis was done for linear relationship. Four machining learning (ML) algorithms (e.g., support vector regression [SVR], ridge regression [RR], extreme gradient boosting [XGboost], and artificial neural network [ANN]) were run for building prediction models. Results By incorporating different parameters, it was found that lower drilling speed, smaller drill diameter, more severe wear, and thicker cortical bone were associated with higher intraosseous temperature changes and longer time exposure and were accompanied with alterations in drilling impulse data. Pearson correlation analysis further identified highly linear correlation between drilling impulse data and thermal changes. Finally, four ML prediction models were established, among which XGboost model showed the best performance with the minimum error measurements in test set. Conclusion The proof‐of‐concept study highlighted close correlation of drilling impulse data with intraosseous temperature change during osteotomy. The ML prediction models may inspire future improvement on prevention of thermal bone injury and intelligent design of robot‐assisted implant surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助朴素的士晋采纳,获得10
1秒前
1秒前
3秒前
调研昵称发布了新的文献求助10
3秒前
3秒前
3秒前
十万大山兵大大给十万大山兵大大的求助进行了留言
3秒前
3秒前
CodeCraft应助Mumu采纳,获得10
4秒前
飘逸数据线完成签到,获得积分10
4秒前
111发布了新的文献求助10
4秒前
Gauss完成签到,获得积分0
4秒前
丘奇完成签到,获得积分10
4秒前
木子发布了新的文献求助10
4秒前
标致的方盒完成签到,获得积分10
4秒前
5秒前
致橡树完成签到,获得积分20
5秒前
Yolo发布了新的文献求助10
5秒前
yyy完成签到,获得积分20
6秒前
6秒前
6秒前
yoon发布了新的文献求助10
6秒前
脑洞疼应助香蕉静芙采纳,获得10
6秒前
JTB完成签到,获得积分10
6秒前
7秒前
慕涔发布了新的文献求助10
7秒前
王磊完成签到,获得积分10
7秒前
梧桐的灯完成签到 ,获得积分10
7秒前
传奇3应助轩辕德地采纳,获得10
7秒前
Arnold完成签到,获得积分20
7秒前
倪妮发布了新的文献求助10
8秒前
Island完成签到,获得积分10
8秒前
LiZheng完成签到,获得积分10
8秒前
深情安青应助致橡树采纳,获得10
9秒前
Leeon完成签到,获得积分10
9秒前
李来仪完成签到,获得积分10
9秒前
打打应助unicornmed采纳,获得10
9秒前
Eddy发布了新的文献求助10
10秒前
体贴远山完成签到,获得积分10
11秒前
顾矜应助贤惠的正豪采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762