Correlation between intraosseous thermal change and drilling impulse data during osteotomy within autonomous dental implant robotic system: An in vitro study

脉冲(物理) 演习 钻探 线性回归 皮尔逊积矩相关系数 机械加工 计算机科学 人工神经网络 生物医学工程 模拟 人工智能 数学 工程类 机械工程 机器学习 统计 物理 量子力学
作者
Ruifeng Zhao,Rui Xie,Nan Ren,Zhiwen Li,Shengrui Zhang,Yuchen Liu,Dong Yu,An‐An Yin,Yimin Zhao,Shizhu Bai
出处
期刊:Clinical Oral Implants Research [Wiley]
卷期号:35 (3): 258-267 被引量:2
标识
DOI:10.1111/clr.14222
摘要

Abstract Objectives This study aims at examining the correlation of intraosseous temperature change with drilling impulse data during osteotomy and establishing real‐time temperature prediction models. Materials and Methods A combination of in vitro bovine rib model and Autonomous Dental Implant Robotic System (ADIR) was set up, in which intraosseous temperature and drilling impulse data were measured using an infrared camera and a six‐axis force/torque sensor respectively. A total of 800 drills with different parameters (e.g., drill diameter, drill wear, drilling speed, and thickness of cortical bone) were experimented, along with an independent test set of 200 drills. Pearson correlation analysis was done for linear relationship. Four machining learning (ML) algorithms (e.g., support vector regression [SVR], ridge regression [RR], extreme gradient boosting [XGboost], and artificial neural network [ANN]) were run for building prediction models. Results By incorporating different parameters, it was found that lower drilling speed, smaller drill diameter, more severe wear, and thicker cortical bone were associated with higher intraosseous temperature changes and longer time exposure and were accompanied with alterations in drilling impulse data. Pearson correlation analysis further identified highly linear correlation between drilling impulse data and thermal changes. Finally, four ML prediction models were established, among which XGboost model showed the best performance with the minimum error measurements in test set. Conclusion The proof‐of‐concept study highlighted close correlation of drilling impulse data with intraosseous temperature change during osteotomy. The ML prediction models may inspire future improvement on prevention of thermal bone injury and intelligent design of robot‐assisted implant surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rfgfg完成签到 ,获得积分10
2秒前
海棠完成签到 ,获得积分10
5秒前
wxn完成签到 ,获得积分10
5秒前
大宝剑3号完成签到 ,获得积分10
6秒前
6秒前
10秒前
10秒前
两块应助啊九lili采纳,获得10
10秒前
薄荷小新完成签到 ,获得积分0
12秒前
伶俐紫发布了新的文献求助10
12秒前
是阮软不是懒懒完成签到 ,获得积分10
13秒前
杰2580发布了新的文献求助10
15秒前
李木禾完成签到 ,获得积分10
15秒前
大气夜山完成签到 ,获得积分10
15秒前
魔山西红柿完成签到,获得积分10
16秒前
没有名字完成签到 ,获得积分10
22秒前
青黛完成签到 ,获得积分10
22秒前
Dank1ng完成签到,获得积分10
23秒前
杰2580完成签到,获得积分10
24秒前
大宝剑2号完成签到 ,获得积分10
25秒前
能干妙竹完成签到,获得积分10
26秒前
小珂完成签到,获得积分10
29秒前
皮皮虾完成签到 ,获得积分10
31秒前
32秒前
不能吃太饱完成签到 ,获得积分10
34秒前
buqi发布了新的文献求助10
35秒前
伶俐紫完成签到,获得积分10
36秒前
36秒前
37秒前
Annie发布了新的文献求助20
37秒前
二队淼队长完成签到,获得积分10
38秒前
我是老大应助清沧炽魂采纳,获得10
38秒前
彳亍宣完成签到 ,获得积分10
39秒前
缥缈的闭月完成签到,获得积分10
42秒前
buqi完成签到,获得积分10
42秒前
孔wj完成签到,获得积分10
43秒前
縤雨完成签到 ,获得积分10
43秒前
43秒前
Tao完成签到,获得积分10
48秒前
48秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212499
求助须知:如何正确求助?哪些是违规求助? 4388659
关于积分的说明 13664251
捐赠科研通 4249165
什么是DOI,文献DOI怎么找? 2331448
邀请新用户注册赠送积分活动 1329148
关于科研通互助平台的介绍 1282561