Correlation between intraosseous thermal change and drilling impulse data during osteotomy within autonomous dental implant robotic system: An in vitro study

脉冲(物理) 演习 钻探 线性回归 皮尔逊积矩相关系数 机械加工 计算机科学 人工神经网络 生物医学工程 模拟 人工智能 数学 工程类 机械工程 机器学习 统计 物理 量子力学
作者
Ruifeng Zhao,Rui Xie,Nan Ren,Zhiwen Li,Shengrui Zhang,Yuchen Liu,Dong Yu,Anan Yin,Yimin Zhao,Shizhu Bai
出处
期刊:Clinical Oral Implants Research [Wiley]
卷期号:35 (3): 258-267 被引量:10
标识
DOI:10.1111/clr.14222
摘要

Abstract Objectives This study aims at examining the correlation of intraosseous temperature change with drilling impulse data during osteotomy and establishing real‐time temperature prediction models. Materials and Methods A combination of in vitro bovine rib model and Autonomous Dental Implant Robotic System (ADIR) was set up, in which intraosseous temperature and drilling impulse data were measured using an infrared camera and a six‐axis force/torque sensor respectively. A total of 800 drills with different parameters (e.g., drill diameter, drill wear, drilling speed, and thickness of cortical bone) were experimented, along with an independent test set of 200 drills. Pearson correlation analysis was done for linear relationship. Four machining learning (ML) algorithms (e.g., support vector regression [SVR], ridge regression [RR], extreme gradient boosting [XGboost], and artificial neural network [ANN]) were run for building prediction models. Results By incorporating different parameters, it was found that lower drilling speed, smaller drill diameter, more severe wear, and thicker cortical bone were associated with higher intraosseous temperature changes and longer time exposure and were accompanied with alterations in drilling impulse data. Pearson correlation analysis further identified highly linear correlation between drilling impulse data and thermal changes. Finally, four ML prediction models were established, among which XGboost model showed the best performance with the minimum error measurements in test set. Conclusion The proof‐of‐concept study highlighted close correlation of drilling impulse data with intraosseous temperature change during osteotomy. The ML prediction models may inspire future improvement on prevention of thermal bone injury and intelligent design of robot‐assisted implant surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
avalanche应助答辩科学家采纳,获得30
刚刚
CodeCraft应助跳跃的冰淇淋采纳,获得10
1秒前
复杂曼梅发布了新的文献求助10
1秒前
Y橙子完成签到,获得积分10
2秒前
zyq发布了新的文献求助10
2秒前
隐形曼青应助郑zhenglanyou采纳,获得10
2秒前
3秒前
漂亮夏兰发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
Ava应助没有你沉采纳,获得10
3秒前
3秒前
4秒前
寻道图强应助General采纳,获得30
4秒前
5秒前
17发布了新的文献求助30
6秒前
善学以致用应助王世俊采纳,获得10
6秒前
小v的格洛米完成签到,获得积分10
6秒前
等待冰之完成签到 ,获得积分10
6秒前
上彐下火发布了新的文献求助10
7秒前
Catalina_S应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
icey发布了新的文献求助10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
HeAuBook应助科研通管家采纳,获得20
8秒前
风趣手链发布了新的文献求助10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424345
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163720
捐赠科研通 4455670
什么是DOI,文献DOI怎么找? 2443852
邀请新用户注册赠送积分活动 1434997
关于科研通互助平台的介绍 1412337