Correlation between intraosseous thermal change and drilling impulse data during osteotomy within autonomous dental implant robotic system: An in vitro study

脉冲(物理) 演习 钻探 线性回归 皮尔逊积矩相关系数 机械加工 计算机科学 人工神经网络 生物医学工程 模拟 人工智能 数学 工程类 机械工程 机器学习 统计 物理 量子力学
作者
Ruifeng Zhao,Rui Xie,Nan Ren,Zhiwen Li,Shengrui Zhang,Yuchen Liu,Dong Yu,An‐An Yin,Yimin Zhao,Shizhu Bai
出处
期刊:Clinical Oral Implants Research [Wiley]
卷期号:35 (3): 258-267 被引量:2
标识
DOI:10.1111/clr.14222
摘要

Abstract Objectives This study aims at examining the correlation of intraosseous temperature change with drilling impulse data during osteotomy and establishing real‐time temperature prediction models. Materials and Methods A combination of in vitro bovine rib model and Autonomous Dental Implant Robotic System (ADIR) was set up, in which intraosseous temperature and drilling impulse data were measured using an infrared camera and a six‐axis force/torque sensor respectively. A total of 800 drills with different parameters (e.g., drill diameter, drill wear, drilling speed, and thickness of cortical bone) were experimented, along with an independent test set of 200 drills. Pearson correlation analysis was done for linear relationship. Four machining learning (ML) algorithms (e.g., support vector regression [SVR], ridge regression [RR], extreme gradient boosting [XGboost], and artificial neural network [ANN]) were run for building prediction models. Results By incorporating different parameters, it was found that lower drilling speed, smaller drill diameter, more severe wear, and thicker cortical bone were associated with higher intraosseous temperature changes and longer time exposure and were accompanied with alterations in drilling impulse data. Pearson correlation analysis further identified highly linear correlation between drilling impulse data and thermal changes. Finally, four ML prediction models were established, among which XGboost model showed the best performance with the minimum error measurements in test set. Conclusion The proof‐of‐concept study highlighted close correlation of drilling impulse data with intraosseous temperature change during osteotomy. The ML prediction models may inspire future improvement on prevention of thermal bone injury and intelligent design of robot‐assisted implant surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨梦松完成签到,获得积分10
8秒前
郑阔完成签到,获得积分10
9秒前
livra1058完成签到,获得积分10
10秒前
沐啊完成签到 ,获得积分10
10秒前
bpi完成签到 ,获得积分10
14秒前
16秒前
Vegeta完成签到 ,获得积分10
19秒前
鲤鱼笑阳完成签到 ,获得积分10
24秒前
周周完成签到 ,获得积分10
43秒前
波里舞完成签到 ,获得积分10
49秒前
曙光完成签到,获得积分10
53秒前
zqy完成签到 ,获得积分10
55秒前
韶绍完成签到 ,获得积分10
1分钟前
1分钟前
Wang发布了新的文献求助10
1分钟前
lingo完成签到 ,获得积分10
1分钟前
Hillson完成签到,获得积分10
1分钟前
科科通通完成签到,获得积分10
1分钟前
popcorn完成签到,获得积分10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
rsdggsrser完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
ALU完成签到 ,获得积分10
1分钟前
1分钟前
自渡完成签到 ,获得积分10
1分钟前
2分钟前
壮观的菠萝完成签到,获得积分10
2分钟前
又又完成签到,获得积分10
2分钟前
2分钟前
笨笨忘幽完成签到,获得积分0
2分钟前
望凌烟完成签到,获得积分10
2分钟前
小白完成签到 ,获得积分10
2分钟前
星辉的斑斓完成签到 ,获得积分10
2分钟前
CLTTT完成签到,获得积分0
2分钟前
Serena完成签到 ,获得积分10
2分钟前
和谐的夏岚完成签到 ,获得积分10
2分钟前
雪山飞龙发布了新的文献求助10
2分钟前
CadoreK完成签到 ,获得积分10
3分钟前
蔡勇强完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293608
求助须知:如何正确求助?哪些是违规求助? 4443689
关于积分的说明 13831517
捐赠科研通 4327531
什么是DOI,文献DOI怎么找? 2375564
邀请新用户注册赠送积分活动 1370832
关于科研通互助平台的介绍 1335793