清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DOMR: Toward Deep Open-World Malware Recognition

计算机科学 恶意软件 人工智能 遗忘 机器学习 再培训 Android(操作系统) 推论 深度学习 代表(政治) 计算机安全 哲学 法学 国际贸易 业务 操作系统 政治 语言学 政治学
作者
Tingting Lu,Junfeng Wang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1455-1468 被引量:3
标识
DOI:10.1109/tifs.2023.3338469
摘要

Deep learning has been widely used for Android malware family recognition, but current deep learning-based approaches make the closed-world assumption that malware families encountered during testing are available at training phase. Unfortunately, this assumption is often violated in practice due to the constant emergence of novel categories and the huge cost of collecting abundant training classes, causing serious failures to the existing approaches. Accordingly, a new problem setting for Android malware family recognition is introduced, i.e., deep open-world malware recognition that poses two critical tasks: 1) Open recognition, aiming to not only classify malware from known families (present in training) but detect malware from unknown families (absent in training); 2) Incremental update, aiming to learn about the detected unknown/new categories without retraining from scratch and catastrophically forgetting the previously learned known/old classes. This paper formalizes the problem and proposes a novel solution called DOMR to address the above two tasks in a unified framework. The core of DOMR is an episode-based representation learning scheme that mimics the open-world setting through episodic training to learn a generalizable representation. The key insight is that the training process following the open-world setting forces the representation to accumulate experience in open recognition, thereby facilitating both the classification of known family instances and the detection of unknown family instances at inference. Given this representation, multiple one-vs-rest classifiers are subsequently built to make the final recognition decision through an aggregative strategy. Comparative experiments show that DOMR outperforms start-of-the-art methods, with macro-averaged F1-scores obtained on two datasets reaching 80.88% and 56.17% in the open case, and 79.34% and 49.55% in the incremental case, respectively. Ablation studies further analyze the effectiveness of DOMR in achieving the open recognition and incremental update goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
小小王完成签到 ,获得积分10
12秒前
Microgan完成签到,获得积分10
13秒前
Never stall完成签到 ,获得积分10
16秒前
小羊咩完成签到 ,获得积分0
17秒前
量子星尘发布了新的文献求助10
23秒前
起个名不麻烦完成签到 ,获得积分10
32秒前
zhilianghui0807完成签到 ,获得积分10
33秒前
34秒前
hlm关注了科研通微信公众号
35秒前
35秒前
Mano完成签到,获得积分10
38秒前
keep完成签到,获得积分10
41秒前
steven完成签到 ,获得积分10
51秒前
牛马完成签到,获得积分10
55秒前
秋夜临完成签到,获得积分0
1分钟前
徐徐图之完成签到 ,获得积分10
1分钟前
阳光的易真完成签到,获得积分10
1分钟前
张彤彤完成签到 ,获得积分10
1分钟前
脚踏实滴完成签到 ,获得积分10
1分钟前
1分钟前
路路完成签到 ,获得积分10
1分钟前
hlm发布了新的文献求助10
1分钟前
小田完成签到 ,获得积分10
1分钟前
chen完成签到 ,获得积分10
1分钟前
1分钟前
夜话风陵杜完成签到 ,获得积分0
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
chaoge完成签到 ,获得积分10
1分钟前
又何必呢完成签到 ,获得积分10
1分钟前
1分钟前
xingyi完成签到,获得积分10
1分钟前
knight7m完成签到 ,获得积分10
1分钟前
gyx完成签到 ,获得积分10
1分钟前
李子完成签到 ,获得积分10
1分钟前
布曲完成签到 ,获得积分10
1分钟前
AmyHu完成签到,获得积分10
1分钟前
先锋老刘001完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015525
求助须知:如何正确求助?哪些是违规求助? 3555483
关于积分的说明 11318059
捐赠科研通 3288677
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812012