DOMR: Toward Deep Open-World Malware Recognition

计算机科学 恶意软件 人工智能 遗忘 机器学习 再培训 Android(操作系统) 推论 深度学习 代表(政治) 计算机安全 哲学 法学 国际贸易 业务 操作系统 政治 语言学 政治学
作者
Tingting Lu,Junfeng Wang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1455-1468 被引量:3
标识
DOI:10.1109/tifs.2023.3338469
摘要

Deep learning has been widely used for Android malware family recognition, but current deep learning-based approaches make the closed-world assumption that malware families encountered during testing are available at training phase. Unfortunately, this assumption is often violated in practice due to the constant emergence of novel categories and the huge cost of collecting abundant training classes, causing serious failures to the existing approaches. Accordingly, a new problem setting for Android malware family recognition is introduced, i.e., deep open-world malware recognition that poses two critical tasks: 1) Open recognition, aiming to not only classify malware from known families (present in training) but detect malware from unknown families (absent in training); 2) Incremental update, aiming to learn about the detected unknown/new categories without retraining from scratch and catastrophically forgetting the previously learned known/old classes. This paper formalizes the problem and proposes a novel solution called DOMR to address the above two tasks in a unified framework. The core of DOMR is an episode-based representation learning scheme that mimics the open-world setting through episodic training to learn a generalizable representation. The key insight is that the training process following the open-world setting forces the representation to accumulate experience in open recognition, thereby facilitating both the classification of known family instances and the detection of unknown family instances at inference. Given this representation, multiple one-vs-rest classifiers are subsequently built to make the final recognition decision through an aggregative strategy. Comparative experiments show that DOMR outperforms start-of-the-art methods, with macro-averaged F1-scores obtained on two datasets reaching 80.88% and 56.17% in the open case, and 79.34% and 49.55% in the incremental case, respectively. Ablation studies further analyze the effectiveness of DOMR in achieving the open recognition and incremental update goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的书白完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助llll采纳,获得10
3秒前
科研通AI6应助xiaxia采纳,获得10
3秒前
4秒前
愉快的砖家完成签到,获得积分20
4秒前
Akim应助sunshine999采纳,获得10
5秒前
llll发布了新的文献求助10
5秒前
6秒前
8秒前
余一发布了新的文献求助10
10秒前
11秒前
11秒前
oldblack完成签到 ,获得积分10
11秒前
小磊完成签到,获得积分10
11秒前
11秒前
闪电侠完成签到 ,获得积分10
12秒前
科研通AI6应助早晨采纳,获得10
13秒前
14秒前
星星发布了新的文献求助10
15秒前
15秒前
小磊发布了新的文献求助10
16秒前
16秒前
斯文的小蜜蜂完成签到,获得积分10
17秒前
17秒前
17秒前
情怀应助zmy采纳,获得30
19秒前
junet发布了新的文献求助10
20秒前
本末倒纸完成签到 ,获得积分10
20秒前
huracan完成签到,获得积分10
21秒前
天天快乐应助land采纳,获得10
21秒前
王某完成签到,获得积分20
21秒前
22秒前
Na完成签到 ,获得积分10
22秒前
Jasper应助科研通管家采纳,获得100
22秒前
大模型应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
Jasper应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133536
求助须知:如何正确求助?哪些是违规求助? 4334655
关于积分的说明 13504255
捐赠科研通 4171630
什么是DOI,文献DOI怎么找? 2287267
邀请新用户注册赠送积分活动 1288167
关于科研通互助平台的介绍 1229009