DOMR: Toward Deep Open-World Malware Recognition

计算机科学 恶意软件 人工智能 遗忘 机器学习 再培训 Android(操作系统) 推论 深度学习 代表(政治) 计算机安全 哲学 法学 国际贸易 业务 操作系统 政治 语言学 政治学
作者
Tingting Lu,Junfeng Wang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1455-1468 被引量:3
标识
DOI:10.1109/tifs.2023.3338469
摘要

Deep learning has been widely used for Android malware family recognition, but current deep learning-based approaches make the closed-world assumption that malware families encountered during testing are available at training phase. Unfortunately, this assumption is often violated in practice due to the constant emergence of novel categories and the huge cost of collecting abundant training classes, causing serious failures to the existing approaches. Accordingly, a new problem setting for Android malware family recognition is introduced, i.e., deep open-world malware recognition that poses two critical tasks: 1) Open recognition, aiming to not only classify malware from known families (present in training) but detect malware from unknown families (absent in training); 2) Incremental update, aiming to learn about the detected unknown/new categories without retraining from scratch and catastrophically forgetting the previously learned known/old classes. This paper formalizes the problem and proposes a novel solution called DOMR to address the above two tasks in a unified framework. The core of DOMR is an episode-based representation learning scheme that mimics the open-world setting through episodic training to learn a generalizable representation. The key insight is that the training process following the open-world setting forces the representation to accumulate experience in open recognition, thereby facilitating both the classification of known family instances and the detection of unknown family instances at inference. Given this representation, multiple one-vs-rest classifiers are subsequently built to make the final recognition decision through an aggregative strategy. Comparative experiments show that DOMR outperforms start-of-the-art methods, with macro-averaged F1-scores obtained on two datasets reaching 80.88% and 56.17% in the open case, and 79.34% and 49.55% in the incremental case, respectively. Ablation studies further analyze the effectiveness of DOMR in achieving the open recognition and incremental update goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CC发布了新的文献求助10
1秒前
哇哇哇哇发布了新的文献求助10
1秒前
2秒前
4秒前
4秒前
时尚凡雁发布了新的文献求助10
5秒前
zhxhh发布了新的文献求助10
6秒前
中性粒细胞1完成签到,获得积分10
6秒前
星辰大海应助这个夏天采纳,获得10
7秒前
onn应助夜泊采纳,获得10
9秒前
自信安南完成签到,获得积分10
10秒前
时尚初柳应助缓慢的怜寒采纳,获得30
11秒前
hxhjy完成签到,获得积分20
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
子车茗应助科研通管家采纳,获得20
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
12秒前
CC关闭了CC文献求助
12秒前
12秒前
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
maox1aoxin应助科研通管家采纳,获得30
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
eternity136应助科研通管家采纳,获得20
13秒前
田様应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
尊敬的驳应助科研通管家采纳,获得10
13秒前
子车茗应助科研通管家采纳,获得10
13秒前
13秒前
无奈的灵松完成签到 ,获得积分10
14秒前
鲤鱼绿旋完成签到,获得积分10
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260332
求助须知:如何正确求助?哪些是违规求助? 2901546
关于积分的说明 8316014
捐赠科研通 2571113
什么是DOI,文献DOI怎么找? 1396847
科研通“疑难数据库(出版商)”最低求助积分说明 653584
邀请新用户注册赠送积分活动 631997