DOMR: Toward Deep Open-World Malware Recognition

计算机科学 恶意软件 人工智能 遗忘 机器学习 再培训 Android(操作系统) 推论 深度学习 代表(政治) 计算机安全 哲学 法学 国际贸易 业务 操作系统 政治 语言学 政治学
作者
Tingting Lu,Junfeng Wang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1455-1468 被引量:8
标识
DOI:10.1109/tifs.2023.3338469
摘要

Deep learning has been widely used for Android malware family recognition, but current deep learning-based approaches make the closed-world assumption that malware families encountered during testing are available at training phase. Unfortunately, this assumption is often violated in practice due to the constant emergence of novel categories and the huge cost of collecting abundant training classes, causing serious failures to the existing approaches. Accordingly, a new problem setting for Android malware family recognition is introduced, i.e., deep open-world malware recognition that poses two critical tasks: 1) Open recognition, aiming to not only classify malware from known families (present in training) but detect malware from unknown families (absent in training); 2) Incremental update, aiming to learn about the detected unknown/new categories without retraining from scratch and catastrophically forgetting the previously learned known/old classes. This paper formalizes the problem and proposes a novel solution called DOMR to address the above two tasks in a unified framework. The core of DOMR is an episode-based representation learning scheme that mimics the open-world setting through episodic training to learn a generalizable representation. The key insight is that the training process following the open-world setting forces the representation to accumulate experience in open recognition, thereby facilitating both the classification of known family instances and the detection of unknown family instances at inference. Given this representation, multiple one-vs-rest classifiers are subsequently built to make the final recognition decision through an aggregative strategy. Comparative experiments show that DOMR outperforms start-of-the-art methods, with macro-averaged F1-scores obtained on two datasets reaching 80.88% and 56.17% in the open case, and 79.34% and 49.55% in the incremental case, respectively. Ablation studies further analyze the effectiveness of DOMR in achieving the open recognition and incremental update goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XuNan完成签到,获得积分10
2秒前
lyf完成签到 ,获得积分10
2秒前
2秒前
白日梦完成签到,获得积分10
5秒前
烟消云散完成签到,获得积分10
8秒前
白日梦发布了新的文献求助10
8秒前
望向天空的鱼完成签到 ,获得积分10
9秒前
叶子完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
12秒前
i2stay完成签到,获得积分10
15秒前
zhang完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
24秒前
maxthon完成签到,获得积分10
27秒前
好学的泷泷完成签到 ,获得积分10
30秒前
flac完成签到,获得积分10
32秒前
yk完成签到 ,获得积分10
35秒前
zhugao完成签到,获得积分10
38秒前
123完成签到 ,获得积分10
42秒前
彪壮的幻丝完成签到 ,获得积分10
43秒前
Kai完成签到 ,获得积分10
44秒前
风信子deon01完成签到,获得积分10
46秒前
化学喵完成签到 ,获得积分10
47秒前
xh完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
51秒前
不可靠月亮完成签到,获得积分10
52秒前
Johnlian完成签到 ,获得积分10
55秒前
眼睛大羽毛完成签到,获得积分10
56秒前
顾矜应助LIZHEN采纳,获得10
58秒前
到底是谁还在做牛马完成签到 ,获得积分10
59秒前
GXW完成签到,获得积分10
1分钟前
嘟嘟豆806完成签到 ,获得积分10
1分钟前
白昼の月完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
可靠月亮完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
开心浩阑应助科研通管家采纳,获得10
1分钟前
开心浩阑应助科研通管家采纳,获得10
1分钟前
梦月完成签到,获得积分10
1分钟前
bi完成签到 ,获得积分10
1分钟前
onevip完成签到,获得积分0
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584832
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771649
捐赠科研通 4615679
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575