DOMR: Toward Deep Open-World Malware Recognition

计算机科学 恶意软件 人工智能 遗忘 机器学习 再培训 Android(操作系统) 推论 深度学习 代表(政治) 计算机安全 哲学 法学 国际贸易 业务 操作系统 政治 语言学 政治学
作者
Tingting Lu,Junfeng Wang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1455-1468 被引量:8
标识
DOI:10.1109/tifs.2023.3338469
摘要

Deep learning has been widely used for Android malware family recognition, but current deep learning-based approaches make the closed-world assumption that malware families encountered during testing are available at training phase. Unfortunately, this assumption is often violated in practice due to the constant emergence of novel categories and the huge cost of collecting abundant training classes, causing serious failures to the existing approaches. Accordingly, a new problem setting for Android malware family recognition is introduced, i.e., deep open-world malware recognition that poses two critical tasks: 1) Open recognition, aiming to not only classify malware from known families (present in training) but detect malware from unknown families (absent in training); 2) Incremental update, aiming to learn about the detected unknown/new categories without retraining from scratch and catastrophically forgetting the previously learned known/old classes. This paper formalizes the problem and proposes a novel solution called DOMR to address the above two tasks in a unified framework. The core of DOMR is an episode-based representation learning scheme that mimics the open-world setting through episodic training to learn a generalizable representation. The key insight is that the training process following the open-world setting forces the representation to accumulate experience in open recognition, thereby facilitating both the classification of known family instances and the detection of unknown family instances at inference. Given this representation, multiple one-vs-rest classifiers are subsequently built to make the final recognition decision through an aggregative strategy. Comparative experiments show that DOMR outperforms start-of-the-art methods, with macro-averaged F1-scores obtained on two datasets reaching 80.88% and 56.17% in the open case, and 79.34% and 49.55% in the incremental case, respectively. Ablation studies further analyze the effectiveness of DOMR in achieving the open recognition and incremental update goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助排骨帮帮主采纳,获得10
刚刚
刚刚
xuan发布了新的文献求助10
刚刚
科研通AI6应助Eujay采纳,获得10
刚刚
ilihe应助非言墨语采纳,获得10
1秒前
小马甲应助袁袁爱科研采纳,获得10
1秒前
科研通AI6应助整齐的怜雪采纳,获得30
1秒前
ztt1221完成签到,获得积分10
2秒前
3秒前
水123发布了新的文献求助10
3秒前
无极微光应助Espoir采纳,获得20
4秒前
ding应助自然棉花糖采纳,获得10
4秒前
YLJ发布了新的文献求助10
5秒前
Maxima完成签到 ,获得积分10
5秒前
xiaokun完成签到,获得积分10
5秒前
BowieHuang应助中中中采纳,获得10
6秒前
英俊的铭应助lixiaofan采纳,获得10
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
xuan完成签到,获得积分10
8秒前
8秒前
夜风发布了新的文献求助20
8秒前
拉长的夜梦完成签到,获得积分10
9秒前
9秒前
10秒前
zlf发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
852应助clear采纳,获得10
11秒前
dreamboat完成签到,获得积分10
11秒前
朝天完成签到,获得积分10
12秒前
研友_宋文昊完成签到,获得积分10
13秒前
科研通AI6应助稳重的凡桃采纳,获得10
13秒前
13秒前
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593599
求助须知:如何正确求助?哪些是违规求助? 4679468
关于积分的说明 14810164
捐赠科研通 4644508
什么是DOI,文献DOI怎么找? 2534573
邀请新用户注册赠送积分活动 1502632
关于科研通互助平台的介绍 1469366