亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DOMR: Toward Deep Open-World Malware Recognition

计算机科学 恶意软件 人工智能 遗忘 机器学习 再培训 Android(操作系统) 推论 深度学习 代表(政治) 计算机安全 哲学 法学 国际贸易 业务 操作系统 政治 语言学 政治学
作者
Tingting Lu,Junfeng Wang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1455-1468 被引量:3
标识
DOI:10.1109/tifs.2023.3338469
摘要

Deep learning has been widely used for Android malware family recognition, but current deep learning-based approaches make the closed-world assumption that malware families encountered during testing are available at training phase. Unfortunately, this assumption is often violated in practice due to the constant emergence of novel categories and the huge cost of collecting abundant training classes, causing serious failures to the existing approaches. Accordingly, a new problem setting for Android malware family recognition is introduced, i.e., deep open-world malware recognition that poses two critical tasks: 1) Open recognition, aiming to not only classify malware from known families (present in training) but detect malware from unknown families (absent in training); 2) Incremental update, aiming to learn about the detected unknown/new categories without retraining from scratch and catastrophically forgetting the previously learned known/old classes. This paper formalizes the problem and proposes a novel solution called DOMR to address the above two tasks in a unified framework. The core of DOMR is an episode-based representation learning scheme that mimics the open-world setting through episodic training to learn a generalizable representation. The key insight is that the training process following the open-world setting forces the representation to accumulate experience in open recognition, thereby facilitating both the classification of known family instances and the detection of unknown family instances at inference. Given this representation, multiple one-vs-rest classifiers are subsequently built to make the final recognition decision through an aggregative strategy. Comparative experiments show that DOMR outperforms start-of-the-art methods, with macro-averaged F1-scores obtained on two datasets reaching 80.88% and 56.17% in the open case, and 79.34% and 49.55% in the incremental case, respectively. Ablation studies further analyze the effectiveness of DOMR in achieving the open recognition and incremental update goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达棉花糖完成签到 ,获得积分10
9秒前
123完成签到,获得积分10
41秒前
123发布了新的文献求助10
44秒前
彩虹儿应助123采纳,获得10
52秒前
poser完成签到,获得积分10
52秒前
1分钟前
sharotju发布了新的文献求助20
1分钟前
1分钟前
科目三应助sharotju采纳,获得10
1分钟前
丁丁发布了新的文献求助10
1分钟前
hugeyoung完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
2分钟前
yuanquaner发布了新的文献求助10
2分钟前
yuanquaner完成签到,获得积分10
2分钟前
Ivan应助sino-ft采纳,获得10
2分钟前
小西完成签到 ,获得积分10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
Sunny完成签到,获得积分10
3分钟前
严冰蝶完成签到 ,获得积分10
4分钟前
5分钟前
殷勤的涵梅完成签到 ,获得积分10
5分钟前
浮游应助科研通管家采纳,获得10
7分钟前
上官若男应助喜上梅梢采纳,获得10
8分钟前
田様应助健明采纳,获得30
8分钟前
我行完成签到 ,获得积分10
8分钟前
9分钟前
婼汐完成签到 ,获得积分10
9分钟前
健明发布了新的文献求助30
9分钟前
9分钟前
喜上梅梢发布了新的文献求助10
9分钟前
浮游应助科研通管家采纳,获得10
9分钟前
晨雾锁阳完成签到 ,获得积分10
10分钟前
古铜完成签到 ,获得积分10
10分钟前
小豆包完成签到 ,获得积分10
10分钟前
bocky完成签到 ,获得积分10
10分钟前
oleskarabach完成签到,获得积分20
10分钟前
啊哈哈哈完成签到 ,获得积分10
11分钟前
jokerhoney完成签到,获得积分10
11分钟前
浮游应助科研通管家采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4541068
求助须知:如何正确求助?哪些是违规求助? 3974729
关于积分的说明 12310835
捐赠科研通 3642020
什么是DOI,文献DOI怎么找? 2005557
邀请新用户注册赠送积分活动 1041003
科研通“疑难数据库(出版商)”最低求助积分说明 930156