Auxiliary input-enhanced siamese neural network: A robust tool wear prediction framework with improved feature extraction and generalization ability

一般化 人工神经网络 模式识别(心理学) 特征提取 特征(语言学) 人工智能 萃取(化学) 计算机科学 工程类 数学 化学 色谱法 数学分析 语言学 哲学
作者
Chenghan Wang,Bin Shen
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:211: 111243-111243 被引量:2
标识
DOI:10.1016/j.ymssp.2024.111243
摘要

Tool wear monitoring is essential for automated and resilient manufacturing, as it can prevent catastrophic failures caused by severe wear on cutting edges during machining. The conventional tool wear monitoring approaches depend on features extracted from signals, which require sensitive signals and consistent tool wear. In practical scenarios, however, neither the sensitivity of collected signals to the tool wear status nor the consistency of the actual tool wear evolution is hard to meet the requirement of the tool condition monitoring algorithm, which greatly limit the wide spread of its industrial applications. To overcome this challenge, we propose an Auxiliary Input-enhanced Siamese Neural Network (AISNN) framework by incorporating a Siamese structure into the feature extraction part of a convolutional neural network (CNN), and introducing an auxiliary input to its nonlinear regression part. The Siamese structure, instead of extracting features directly from signals, distinguishes the difference between the features extracted from signals of the examined cut and the first cut, and uses this difference as the indicator of tool wear status. Moreover, the auxiliary input provides an additional feature that has heavy dependence on the tool wear, which enables the model learning the general wear evolution of the examined cutting tool. The effectiveness of the proposed AISNN framework is verified in a set of milling experiments where input signal is insensitive to the flank wear of cutting tool and different tools' wear evolution exhibits obvious inconsistency. Compared to the traditional CNN, the proposed AISNN significantly improves the accuracy on the verification set from 63% to 95% and on the testing set from 50% to 81%. The results demonstrate that the AISNN framework achieves significant improvement in feature extraction and generalization ability. The proposed AISNN, as a universal framework, can empower most existing deep learning-based tool wear prediction methods, enhancing their robustness in handling insensitive signals and inconsistent wear evolution and thereby promoting more industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
希望天下0贩的0应助cleva采纳,获得10
刚刚
carly发布了新的文献求助10
1秒前
1秒前
whh123完成签到,获得积分10
2秒前
包容雨雪发布了新的文献求助20
3秒前
3秒前
EL发布了新的文献求助10
3秒前
百十余完成签到,获得积分10
3秒前
4秒前
8R60d8应助斯文谷秋采纳,获得10
4秒前
5秒前
DYLAN_ZZ完成签到,获得积分10
7秒前
调研昵称发布了新的文献求助10
8秒前
fanmo完成签到 ,获得积分0
8秒前
豆子发布了新的文献求助10
8秒前
9秒前
Sefank发布了新的文献求助10
10秒前
韩妙完成签到,获得积分20
10秒前
佟佳Red发布了新的文献求助10
10秒前
xkyasc完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
12秒前
情怀应助Hou采纳,获得10
13秒前
14秒前
Una发布了新的文献求助10
14秒前
15秒前
yyyyyao发布了新的文献求助10
15秒前
韩妙发布了新的文献求助10
15秒前
包容雨雪完成签到,获得积分10
16秒前
飞翔鸟完成签到,获得积分10
16秒前
16秒前
汉堡包应助九点一定起采纳,获得10
17秒前
无机盐发布了新的文献求助10
17秒前
顾矜应助小鱼还没睡a采纳,获得10
17秒前
maomao发布了新的文献求助10
18秒前
Una完成签到,获得积分10
20秒前
20秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217943
求助须知:如何正确求助?哪些是违规求助? 2867189
关于积分的说明 8155138
捐赠科研通 2533994
什么是DOI,文献DOI怎么找? 1366730
科研通“疑难数据库(出版商)”最低求助积分说明 644865
邀请新用户注册赠送积分活动 617845