亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Auxiliary input-enhanced siamese neural network: A robust tool wear prediction framework with improved feature extraction and generalization ability

一般化 刀具磨损 人工神经网络 模式识别(心理学) 特征提取 机械加工 特征(语言学) 集合(抽象数据类型) 刀具 人工智能 卷积神经网络 一致性(知识库) 计算机科学 灵敏度(控制系统) 信号(编程语言) 工程类 数学 机械工程 电子工程 程序设计语言 哲学 语言学 数学分析
作者
Chenghan Wang,Bin Shen
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:211: 111243-111243 被引量:6
标识
DOI:10.1016/j.ymssp.2024.111243
摘要

Tool wear monitoring is essential for automated and resilient manufacturing, as it can prevent catastrophic failures caused by severe wear on cutting edges during machining. The conventional tool wear monitoring approaches depend on features extracted from signals, which require sensitive signals and consistent tool wear. In practical scenarios, however, neither the sensitivity of collected signals to the tool wear status nor the consistency of the actual tool wear evolution is hard to meet the requirement of the tool condition monitoring algorithm, which greatly limit the wide spread of its industrial applications. To overcome this challenge, we propose an Auxiliary Input-enhanced Siamese Neural Network (AISNN) framework by incorporating a Siamese structure into the feature extraction part of a convolutional neural network (CNN), and introducing an auxiliary input to its nonlinear regression part. The Siamese structure, instead of extracting features directly from signals, distinguishes the difference between the features extracted from signals of the examined cut and the first cut, and uses this difference as the indicator of tool wear status. Moreover, the auxiliary input provides an additional feature that has heavy dependence on the tool wear, which enables the model learning the general wear evolution of the examined cutting tool. The effectiveness of the proposed AISNN framework is verified in a set of milling experiments where input signal is insensitive to the flank wear of cutting tool and different tools' wear evolution exhibits obvious inconsistency. Compared to the traditional CNN, the proposed AISNN significantly improves the accuracy on the verification set from 63% to 95% and on the testing set from 50% to 81%. The results demonstrate that the AISNN framework achieves significant improvement in feature extraction and generalization ability. The proposed AISNN, as a universal framework, can empower most existing deep learning-based tool wear prediction methods, enhancing their robustness in handling insensitive signals and inconsistent wear evolution and thereby promoting more industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
jyf发布了新的文献求助10
13秒前
MchemG应助科研通管家采纳,获得10
14秒前
23秒前
26秒前
34秒前
淡定友有发布了新的文献求助10
38秒前
1分钟前
1分钟前
faker完成签到,获得积分10
1分钟前
淡定友有完成签到,获得积分10
1分钟前
khaosyi完成签到 ,获得积分10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
kmkm发布了新的文献求助10
2分钟前
邬化蛹发布了新的文献求助10
2分钟前
小马甲应助邬化蛹采纳,获得10
2分钟前
3分钟前
3分钟前
老石完成签到 ,获得积分10
3分钟前
556发布了新的文献求助30
3分钟前
3分钟前
搜集达人应助kmkm采纳,获得10
3分钟前
邬化蛹发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
kmkm关注了科研通微信公众号
4分钟前
5分钟前
ckyyds完成签到 ,获得积分10
5分钟前
5分钟前
yuqinghui98完成签到 ,获得积分10
5分钟前
kmkm发布了新的文献求助10
5分钟前
111完成签到 ,获得积分10
5分钟前
6分钟前
赘婿应助科研通管家采纳,获得10
6分钟前
6分钟前
Aurora完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155694
捐赠科研通 3245416
什么是DOI,文献DOI怎么找? 1792891
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216