肿瘤微环境
免疫系统
癌症研究
细胞生物学
细胞毒性T细胞
重编程
肿瘤进展
生物
癌症免疫疗法
免疫疗法
化学
体外
癌症
免疫学
细胞
生物化学
遗传学
作者
Peng Zheng,Jinrong He,Yuting Fu,Ying Yang,Shuqin Li,Biao Duan,Ying Yang,Yongmao Hu,Zhongqian Yang,Mengzhen Wang,Qingwen Liu,Xiao Zheng,Liangqun Hua,Weiran Li,Duo Li,Yiting Ding,Yang Xu,Hongmei Bai,Qiong Long,Weiwei Huang,Yanbing Ma
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-02-22
卷期号:18 (9): 6863-6886
被引量:2
标识
DOI:10.1021/acsnano.3c06987
摘要
Tumor-associated macrophages (TAMs) are among the most abundant infiltrating leukocytes in the tumor microenvironment (TME). Reprogramming TAMs from protumor M2 to antitumor M1 phenotype is a promising strategy for remodeling the TME and promoting antitumor immunity; however, the development of an efficient strategy remains challenging. Here, a genetically modified bacterial biomimetic vesicle (BBV) with IFN-γ exposed on the surface in a nanoassembling membrane pore structure was constructed. The engineered IFN-γ BBV featured a nanoscale structure of protein and lipid vesicle, the existence of rich pattern-associated molecular patterns (PAMPs), and the costimulation of introduced IFN-γ molecules. In vitro, IFN-γ BBV reprogrammed M2 macrophages to M1, possibly through NF-κB and JAK-STAT signaling pathways, releasing nitric oxide (NO) and inflammatory cytokines IL-1β, IL-6, and TNF-α and increasing the expression of IL-12 and iNOS. In tumor-bearing mice, IFN-γ BBV demonstrated a targeted enrichment in tumors and successfully reprogrammed TAMs into the M1 phenotype; notably, the response of antigen-specific cytotoxic T lymphocyte (CTL) in TME was promoted while the immunosuppressive myeloid-derived suppressor cell (MDSC) was suppressed. The tumor growth was found to be significantly inhibited in both a TC-1 tumor and a CT26 tumor. It was indicated that the antitumor effects of IFN-γ BBV were macrophage-dependent. Further, the modulation of TME by IFN-γ BBV produced synergistic effects against tumor growth and metastasis with an immune checkpoint inhibitor in an orthotopic 4T1 breast cancer model which was insensitive to anti-PD-1 mAb alone. In conclusion, IFN-γ-modified BBV demonstrated a strong capability of efficiently targeting tumor and tuning a cold tumor hot through reprogramming TAMs, providing a potent approach for tumor immunotherapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI