AI-assisted inverse design of sequence-ordered high intrinsic thermal conductivity polymers

反向 序列(生物学) 热导率 聚合物 材料科学 逆温 热的 高分子科学 复合材料 物理 数学 热力学 化学 几何学 生物化学
作者
Xiang Huang,Chenxiao Zhao,Hong Wang,Shenghong Ju
出处
期刊:Cornell University - arXiv
标识
DOI:10.1016/j.mtphys.2024.101438
摘要

Artificial intelligence (AI) promotes the polymer design paradigm from a traditional trial-and-error approach to a data-driven style. Achieving high thermal conductivity (TC) for intrinsic polymers is urgent because of their importance in the thermal management of many industrial applications such as microelectronic devices and integrated circuits. In this work, we have proposed a robust AI-assisted workflow for the inverse design of high TC polymers. By using 1144 polymers with known computational TCs, we construct a surrogate deep neural network model for TC prediction and extract a polymer-unit library with 32 sequences. Two state-of-the-art multi-objective optimization algorithms of unified non-dominated sorting genetic algorithm III (U-NSGA-III) and q-noisy expected hypervolume improvement (qNEHVI) are employed for sequence-ordered polymer design with both high TC and synthetic possibility. For triblock polymer design, the result indicates that qNHEVI is capable of exploring a diversity of optimal polymers at the Pareto front, but the uncertainty in Quasi-Monte Carlo sampling makes the trials costly. The performance of U-NSGA-III is affected by the initial random structures and usually falls into a locally optimal solution, but it takes fewer attempts with lower costs. 20 parallel U-NSGA-III runs are conducted to design the pentablock polymers with high TC, and half of the candidates among 1921 generated polymers achieve the targets (TC > 0.4 W/(mK) and SA < 3.0). Ultimately, we check the TC of 50 promising polymers through molecular dynamics simulations and reveal the intrinsic connections between microstructures and TCs. Our developed AI-assisted inverse design approach for polymers is flexible and universal, and can be extended to the design of polymers with other target properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助xiaoqi采纳,获得10
刚刚
科研通AI2S应助zhang08采纳,获得10
1秒前
1秒前
sll应助goahead0523采纳,获得10
3秒前
DWD完成签到,获得积分10
4秒前
4秒前
4秒前
klee发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
仙人刺完成签到 ,获得积分10
5秒前
5秒前
fhz发布了新的文献求助10
5秒前
6秒前
6秒前
水何澹澹完成签到,获得积分0
6秒前
劲秉应助lxl采纳,获得80
7秒前
田様应助倒置的脚印采纳,获得10
7秒前
7秒前
上官若男应助杨仔采纳,获得10
8秒前
充电宝应助拉长的问晴采纳,获得10
8秒前
nnn完成签到,获得积分20
8秒前
9秒前
晋击的小徐完成签到,获得积分10
9秒前
斯文败类应助AmyHu采纳,获得10
10秒前
申木发布了新的文献求助50
10秒前
Ruilin完成签到,获得积分10
10秒前
叶文轩发布了新的文献求助10
10秒前
11秒前
elle发布了新的文献求助10
11秒前
klee完成签到,获得积分10
11秒前
洪艳应助易琚采纳,获得18
12秒前
韩芸姣完成签到,获得积分10
12秒前
迅速冰岚发布了新的文献求助30
13秒前
Ruilin发布了新的文献求助30
13秒前
今后应助青梅憔悴采纳,获得10
15秒前
yyhatb完成签到,获得积分10
16秒前
guopeng发布了新的文献求助10
17秒前
Jasper应助略略略采纳,获得10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259400
求助须知:如何正确求助?哪些是违规求助? 2901041
关于积分的说明 8313648
捐赠科研通 2570419
什么是DOI,文献DOI怎么找? 1396491
科研通“疑难数据库(出版商)”最低求助积分说明 653523
邀请新用户注册赠送积分活动 631527