Unsupervised Discriminative Feature Selection via Contrastive Graph Learning

判别式 人工智能 模式识别(心理学) 特征选择 计算机科学 拉普拉斯矩阵 图形 特征学习 编码 特征向量 图嵌入 机器学习 嵌入 理论计算机科学 生物化学 化学 基因
作者
Qian Zhou,Qianqian Wang,Quanxue Gao,Ming Yang,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 972-986 被引量:3
标识
DOI:10.1109/tip.2024.3353572
摘要

Due to many unmarked data, there has been tremendous interest in developing unsupervised feature selection methods, among which graph-guided feature selection is one of the most representative techniques. However, the existing feature selection methods have the following limitations: (1) All of them only remove redundant features shared by all classes and neglect the class-specific properties; thus, the selected features cannot well characterize the discriminative structure of the data. (2) The existing methods only consider the relationship between the data and the corresponding neighbor points by Euclidean distance while neglecting the differences with other samples. Thus, existing methods cannot encode discriminative information well. (3) They adaptively learn the graph in the original or embedding space. Thus, the learned graph cannot characterize the data's cluster structure. To solve these limitations, we present a novel unsupervised discriminative feature selection via contrastive graph learning, which integrates feature selection and graph learning into a uniform framework. Specifically, our model adaptively learns the affinity matrix, which helps characterize the data's intrinsic and cluster structures in the original space and the contrastive learning. We minimize ℓ 1,2 -norm regularization on the projection matrix to preserve class-specific features and remove redundant features shared by all classes. Thus, the selected features encode discriminative information well and characterize the discriminative structure of the data. Generous experiments indicate that our proposed model has state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘唐荣发布了新的文献求助10
刚刚
Yue关注了科研通微信公众号
刚刚
robust66发布了新的文献求助10
1秒前
帝国超级硕士完成签到,获得积分10
1秒前
diuwaitao完成签到,获得积分10
2秒前
Jasper应助斯文鸡采纳,获得10
2秒前
4秒前
4秒前
4秒前
FashionBoy应助江秋寒采纳,获得10
4秒前
你猜我猜不猜你在猜完成签到,获得积分10
5秒前
李归来完成签到 ,获得积分10
6秒前
开始啦完成签到,获得积分10
6秒前
6秒前
可爱的函函应助栗子采纳,获得30
6秒前
高无怨发布了新的文献求助10
6秒前
陶醉觅夏发布了新的文献求助10
6秒前
若南完成签到,获得积分10
7秒前
7秒前
丘比特应助嗑瓜子传奇采纳,获得10
8秒前
苏卿应助牛牛在搬砖采纳,获得10
8秒前
8秒前
向日繁花完成签到,获得积分10
8秒前
liu发布了新的文献求助10
9秒前
在水一方应助坚强亦丝采纳,获得10
9秒前
烟花应助Erica采纳,获得10
9秒前
热衷发布了新的文献求助10
9秒前
面包边应助Winks采纳,获得10
10秒前
刘唐荣完成签到,获得积分10
10秒前
CipherSage应助丁小丁采纳,获得10
11秒前
汤圆完成签到,获得积分20
11秒前
Rewi_Zhang完成签到,获得积分10
12秒前
芳华如梦完成签到,获得积分10
13秒前
小姜发布了新的文献求助10
13秒前
13秒前
天涯业完成签到 ,获得积分10
14秒前
雨肖发布了新的文献求助10
14秒前
希望天下0贩的0应助afu采纳,获得10
14秒前
XYxiangqian完成签到,获得积分10
15秒前
冬05完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559156
求助须知:如何正确求助?哪些是违规求助? 3133718
关于积分的说明 9403929
捐赠科研通 2833973
什么是DOI,文献DOI怎么找? 1557731
邀请新用户注册赠送积分活动 727632
科研通“疑难数据库(出版商)”最低求助积分说明 716383