FedRFQ: Prototype-Based Federated Learning with Reduced Redundancy, Minimal Failure, and Enhanced Quality

联合学习 冗余(工程) 计算机科学 MNIST数据库 分布式计算 数据冗余 机器学习 人工智能 嵌入式系统 数据库 深度学习 操作系统
作者
Biwei Yan,Hongliang Zhang,Minghui Xu,Dongxiao Yu,Xiuzhen Cheng
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2401.07558
摘要

Federated learning is a powerful technique that enables collaborative learning among different clients. Prototype-based federated learning is a specific approach that improves the performance of local models under non-IID (non-Independently and Identically Distributed) settings by integrating class prototypes. However, prototype-based federated learning faces several challenges, such as prototype redundancy and prototype failure, which limit its accuracy. It is also susceptible to poisoning attacks and server malfunctions, which can degrade the prototype quality. To address these issues, we propose FedRFQ, a prototype-based federated learning approach that aims to reduce redundancy, minimize failures, and improve \underline{q}uality. FedRFQ leverages a SoftPool mechanism, which effectively mitigates prototype redundancy and prototype failure on non-IID data. Furthermore, we introduce the BFT-detect, a BFT (Byzantine Fault Tolerance) detectable aggregation algorithm, to ensure the security of FedRFQ against poisoning attacks and server malfunctions. Finally, we conduct experiments on three different datasets, namely MNIST, FEMNIST, and CIFAR-10, and the results demonstrate that FedRFQ outperforms existing baselines in terms of accuracy when handling non-IID data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迪丽热巴发布了新的文献求助10
1秒前
3399完成签到,获得积分10
1秒前
FashionBoy应助李玲玲采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
大踏步完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
Lucas应助王贺帅采纳,获得10
2秒前
珂尔维特完成签到,获得积分10
2秒前
WUT完成签到,获得积分10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
Oreki发布了新的文献求助10
2秒前
2秒前
3秒前
小白白完成签到,获得积分10
3秒前
郭小胖14应助科研通管家采纳,获得10
3秒前
bkagyin应助天天天采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
3秒前
ding应助科研通管家采纳,获得10
3秒前
科研通AI5应助nanonamo采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得30
3秒前
wanci应助科研通管家采纳,获得10
3秒前
研友_Zr2mxZ完成签到,获得积分10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
深情安青应助啦啦啦采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
Q11完成签到,获得积分10
4秒前
传奇3应助科研通管家采纳,获得10
5秒前
1+1应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730023
求助须知:如何正确求助?哪些是违规求助? 3274861
关于积分的说明 9989324
捐赠科研通 2990315
什么是DOI,文献DOI怎么找? 1641017
邀请新用户注册赠送积分活动 779534
科研通“疑难数据库(出版商)”最低求助积分说明 748237