角膜上皮
鳞状化生
炎症
化生
细胞生物学
上皮
化学
免疫学
生物
病理
医学
作者
Kai Fan,Nuo Dong,Meichai Fang,Zixun Xiang,Lan Zheng,Mengyuan Wang,Y. J. Shi,Gang Tan,Li Cheng,Yuhua Xue
标识
DOI:10.1016/j.jhazmat.2023.133219
摘要
Ozone is a common air pollutant associated with various human diseases. The human ocular surface is frequently exposed to ozone in the troposphere, but the mechanisms by which ozone affects the ocular surface health remain unclear. This study aimed to establish a mouse model to investigate the effects of ozone exposure on the ocular surface and the corneal epithelium. The findings revealed that ozone exposure disrupted corneal epithelial homeostasis and differentiation, resulting in corneal squamous metaplasia. Further, ozone exposure induced oxidative damage and cytoplasmic leakage of mitochondrial DNA (mtDNA), thereby activating the cGAS/STING signaling pathway. The activation of the cGAS/STING signaling pathway triggered the activation of downstream NF-κB and TRAF6 signaling pathways, causing corneal inflammation, thereby promoting corneal inflammation and squamous metaplasia. Finally, C-176, a selective STING inhibitor, effectively prevented and treated corneal inflammation and squamous metaplasia caused by ozone exposure. This study revealed the role of mtDNA leakage-mediated cGAS/STING activation in corneal squamous epithelial metaplasia caused by ozone exposure. It also depicted the abnormal expression pattern of corneal epithelial keratin using three-dimensional images, providing new targets and strategies for preventing and treating corneal squamous metaplasia and other ocular surface diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI