YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information

计算机科学 人工智能 人机交互
作者
Chien-Yao Wang,I-Hau Yeh,Hong-Yuan Mark Liao
出处
期刊:Cornell University - arXiv 被引量:90
标识
DOI:10.48550/arxiv.2402.13616
摘要

Today's deep learning methods focus on how to design the most appropriate objective functions so that the prediction results of the model can be closest to the ground truth. Meanwhile, an appropriate architecture that can facilitate acquisition of enough information for prediction has to be designed. Existing methods ignore a fact that when input data undergoes layer-by-layer feature extraction and spatial transformation, large amount of information will be lost. This paper will delve into the important issues of data loss when data is transmitted through deep networks, namely information bottleneck and reversible functions. We proposed the concept of programmable gradient information (PGI) to cope with the various changes required by deep networks to achieve multiple objectives. PGI can provide complete input information for the target task to calculate objective function, so that reliable gradient information can be obtained to update network weights. In addition, a new lightweight network architecture -- Generalized Efficient Layer Aggregation Network (GELAN), based on gradient path planning is designed. GELAN's architecture confirms that PGI has gained superior results on lightweight models. We verified the proposed GELAN and PGI on MS COCO dataset based object detection. The results show that GELAN only uses conventional convolution operators to achieve better parameter utilization than the state-of-the-art methods developed based on depth-wise convolution. PGI can be used for variety of models from lightweight to large. It can be used to obtain complete information, so that train-from-scratch models can achieve better results than state-of-the-art models pre-trained using large datasets, the comparison results are shown in Figure 1. The source codes are at: https://github.com/WongKinYiu/yolov9.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南巷发布了新的文献求助10
刚刚
Jasper应助时尚初南采纳,获得10
刚刚
courage完成签到,获得积分10
1秒前
搜集达人应助祖安露采纳,获得10
2秒前
善学以致用应助小周周采纳,获得10
2秒前
GXLong发布了新的文献求助10
3秒前
Hey发布了新的文献求助20
3秒前
3秒前
4秒前
柯米克发布了新的文献求助10
4秒前
lm发布了新的文献求助10
7秒前
CipherSage应助体贴汽车采纳,获得10
9秒前
两味愚发布了新的文献求助10
9秒前
10秒前
12秒前
小马甲应助GXLong采纳,获得10
12秒前
12秒前
CodeCraft应助柯米克采纳,获得10
12秒前
深情安青应助淡淡梦容采纳,获得10
13秒前
苏利文发布了新的文献求助30
14秒前
JayeChen完成签到,获得积分10
14秒前
14秒前
屈绮兰应助张张采纳,获得30
15秒前
ding应助玉小赤采纳,获得10
15秒前
16秒前
愉快的雪珍完成签到,获得积分10
17秒前
sylnd126发布了新的文献求助10
17秒前
17秒前
KK发布了新的文献求助10
18秒前
19秒前
21秒前
体贴汽车发布了新的文献求助10
21秒前
22秒前
能干冰露发布了新的文献求助10
22秒前
23秒前
24秒前
liz_应助mariawang采纳,获得10
24秒前
DT发布了新的文献求助10
24秒前
EED驳回了今后应助
25秒前
Orange应助酷酷的王采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021