YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information

计算机科学 人工智能 人机交互
作者
Chien-Yao Wang,I-Hau Yeh,Hong-Yuan Mark Liao
出处
期刊:Cornell University - arXiv 被引量:126
标识
DOI:10.48550/arxiv.2402.13616
摘要

Today's deep learning methods focus on how to design the most appropriate objective functions so that the prediction results of the model can be closest to the ground truth. Meanwhile, an appropriate architecture that can facilitate acquisition of enough information for prediction has to be designed. Existing methods ignore a fact that when input data undergoes layer-by-layer feature extraction and spatial transformation, large amount of information will be lost. This paper will delve into the important issues of data loss when data is transmitted through deep networks, namely information bottleneck and reversible functions. We proposed the concept of programmable gradient information (PGI) to cope with the various changes required by deep networks to achieve multiple objectives. PGI can provide complete input information for the target task to calculate objective function, so that reliable gradient information can be obtained to update network weights. In addition, a new lightweight network architecture -- Generalized Efficient Layer Aggregation Network (GELAN), based on gradient path planning is designed. GELAN's architecture confirms that PGI has gained superior results on lightweight models. We verified the proposed GELAN and PGI on MS COCO dataset based object detection. The results show that GELAN only uses conventional convolution operators to achieve better parameter utilization than the state-of-the-art methods developed based on depth-wise convolution. PGI can be used for variety of models from lightweight to large. It can be used to obtain complete information, so that train-from-scratch models can achieve better results than state-of-the-art models pre-trained using large datasets, the comparison results are shown in Figure 1. The source codes are at: https://github.com/WongKinYiu/yolov9.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
茜茜完成签到 ,获得积分10
1秒前
1秒前
zyyyyyy发布了新的文献求助10
1秒前
燕子发布了新的文献求助10
3秒前
AU发布了新的文献求助10
3秒前
酷波er应助susan采纳,获得10
4秒前
卟茨卟茨完成签到,获得积分10
5秒前
小马甲应助Mingyue123采纳,获得10
5秒前
古月完成签到,获得积分10
6秒前
小马甲应助勤奋的从菡采纳,获得10
7秒前
小小喵发布了新的文献求助10
7秒前
7秒前
奥里给完成签到 ,获得积分10
8秒前
浅尝离白应助科研通管家采纳,获得30
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
sera发布了新的文献求助10
10秒前
11秒前
xiaoGuo完成签到,获得积分10
11秒前
科研通AI2S应助王九八采纳,获得10
12秒前
12秒前
1097完成签到 ,获得积分10
12秒前
燕子完成签到,获得积分10
12秒前
orixero应助wise111采纳,获得10
13秒前
15秒前
16秒前
英姑应助chenyunxia采纳,获得10
16秒前
16秒前
冷月芳华发布了新的文献求助10
17秒前
19秒前
烟花应助小镇青年采纳,获得10
20秒前
lijiajun发布了新的文献求助10
20秒前
清风荷影完成签到 ,获得积分10
21秒前
昨夜書完成签到 ,获得积分10
22秒前
22秒前
supermary发布了新的文献求助10
23秒前
23秒前
自然的书萱完成签到,获得积分10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148361
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7835018
捐赠科研通 2456710
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655