Unraveling the Catalytic Mechanism of Taxadiene-5α-hydroxylase from Crystallography and Computational Analyses

催化作用 两性离子 埃博霉素 羟基化 化学 紫杉醇 立体化学 组合化学 有机化学 分子 生物 遗传学 化疗
作者
Xitong Song,Qian Wang,Xiaoxi Zhu,Wenhan Fang,Xiaonan Liu,Chao Shi,Zhenzhan Chang,Huifeng Jiang,Binju Wang
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (6): 3912-3925 被引量:15
标识
DOI:10.1021/acscatal.3c05807
摘要

Paclitaxel is a famous chemotherapeutic agent, but its microbial production poses a long-standing challenge due to its poor product selectivity. Taxadiene-5α-hydroxylase (CYP725A4) plays a crucial role in the biosynthesis of paclitaxel, catalyzing the oxidation of taxadiene and iso-taxadiene. This process yields several products, including the byproducts 5(12)-oxa-3(11)-cyclotaxane (OCT) and 5(11)-oxa-3(11)-cyclotaxane (iso-OCT), as well as the target compound taxadien-5α-ol (T5OH). Despite extensive studies, the molecular mechanism of CYP725A4-catalyzed transformations is still elusive, which could impede our understanding of further engineering of the paclitaxel biosynthetic pathway. In this study, the crystal structure of CYP725A4 in complex with taxadiene is elucidated. Through comprehensive computational analyses, the catalytic mechanisms of CYP725A4 in the biosynthesis of natural paclitaxel are deciphered. Our calculations indicate that the oxidation of taxadiene affords a zwitterion intermediate, which can undergo two competing transformation routes. One involves the formation of epoxide, which further undergoes the water-mediated rearrangement to form the T5OH product. In the alternative pathway, protonation of the oxygen in the zwitterion intermediate facilitates subsequent hydride transfer and carbon–oxygen coupling, resulting in the side products OCT/iso-OCT. Contrary to taxadiene, hydroxylation at C5 of iso-taxadiene directly yields the target product T5OH. These crystallographic studies and computational analyses have yielded valuable insights into the catalytic mechanisms of CYP725A4 and laid the foundation for the further engineering of CYP725A4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
丘比特应助菜菜果冻采纳,获得10
刚刚
啾啾完成签到,获得积分10
刚刚
吴欣欣发布了新的文献求助10
刚刚
在水一方应助wang5945采纳,获得10
1秒前
斯文败类应助虚心的大树采纳,获得10
1秒前
2秒前
GGbond发布了新的文献求助10
3秒前
GGbond发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
三岁应助土豪的行云采纳,获得10
5秒前
ydl0927发布了新的文献求助10
5秒前
5秒前
xiaoyan完成签到,获得积分10
5秒前
6秒前
liu发布了新的文献求助10
6秒前
Magic1987发布了新的文献求助10
6秒前
6秒前
7秒前
颜雅僖发布了新的文献求助10
7秒前
8秒前
吴欣欣完成签到,获得积分10
8秒前
9秒前
喵喵发布了新的文献求助10
9秒前
聆听发布了新的文献求助10
10秒前
11秒前
nancyjcfan完成签到,获得积分10
11秒前
周楷航发布了新的文献求助10
11秒前
天天快乐应助宇文宛菡采纳,获得10
12秒前
12秒前
12秒前
12秒前
13秒前
上官若男应助yy采纳,获得10
14秒前
星辰大海应助Magic1987采纳,获得10
14秒前
高翔发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901