光探测
材料科学
化学气相沉积
光电子学
薄膜
纳米技术
光电探测器
作者
Yuan Li,Di Li,Nasrullah Wazir,Yong Zhu,Yushu Wang,Qiwei Wang,Wenhan Zhou,Jian Zhou,Songlin Li,Shao‐Chun Li,Shengli Zhang,Haibo Zeng,Wu Zhou,Yi Shi,Yufeng Hao
标识
DOI:10.1002/adfm.202316849
摘要
Abstract SnSb 2 Te 4 (SST), a ternary van der Waals (vdW) material, has been widely investigated during last decades for potential applications in superconductivity, thermoelectricity, and optoelectronics. Recently, atomically thin SST has been predicted to show abnormal electronic band structure evolutions, high carrier mobility, and strong light–matter interaction. However, controllable synthesis of such SST crystals has been a huge challenge. Herein, atomically thin SST flakes are prepared via a chemical vapor deposition (CVD) method by using SbCl 3 , SnCl 4 ·5H 2 O, and Te as the precursors. Multiple structural characterizations reveal that the SST flakes are single crystals with high crystallinity. Due to the narrow bandgap of 0.42 eV, SST‐based photodetectors have a broadband spectrum detection range from visible light through communication bands (480–1550 nm). More importantly, benefiting from a high room‐temperature carrier mobility over 300 cm 2 V −1 s −1 , the SST photodetectors demonstrate a response/recovery time of tens of tens of microseconds, which exceeds most typical transition metal dichalcogenide (TMDC) flakes. In addition, the photodetector maintains high performance after being exposed to the air for 2 months, suggesting good environmental stability. These excellent performances suggest that the SST flakes are promising for next‐generation optoelectronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI