An Overview of the Free Energy Principle and Related Research

强化学习 生成语法 感知 人工智能 生成模型 自由能原理 计算机科学 推论 推论 功能(生物学) 认知科学 领域(数学分析) 机器学习 人机交互 心理学 数学 生物 进化生物学 数学分析 神经科学 纯数学
作者
Zhengquan Zhang,Feng Xu
出处
期刊:Neural Computation [MIT Press]
卷期号:36 (5): 963-1021
标识
DOI:10.1162/neco_a_01642
摘要

Abstract The free energy principle and its corollary, the active inference framework, serve as theoretical foundations in the domain of neuroscience, explaining the genesis of intelligent behavior. This principle states that the processes of perception, learning, and decision making—within an agent—are all driven by the objective of “minimizing free energy,” evincing the following behaviors: learning and employing a generative model of the environment to interpret observations, thereby achieving perception, and selecting actions to maintain a stable preferred state and minimize the uncertainty about the environment, thereby achieving decision making. This fundamental principle can be used to explain how the brain processes perceptual information, learns about the environment, and selects actions. Two pivotal tenets are that the agent employs a generative model for perception and planning and that interaction with the world (and other agents) enhances the performance of the generative model and augments perception. With the evolution of control theory and deep learning tools, agents based on the FEP have been instantiated in various ways across different domains, guiding the design of a multitude of generative models and decision-making algorithms. This letter first introduces the basic concepts of the FEP, followed by its historical development and connections with other theories of intelligence, and then delves into the specific application of the FEP to perception and decision making, encompassing both low-dimensional simple situations and high-dimensional complex situations. It compares the FEP with model-based reinforcement learning to show that the FEP provides a better objective function. We illustrate this using numerical studies of Dreamer3 by adding expected information gain into the standard objective function. In a complementary fashion, existing reinforcement learning, and deep learning algorithms can also help implement the FEP-based agents. Finally, we discuss the various capabilities that agents need to possess in complex environments and state that the FEP can aid agents in acquiring these capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tans0008完成签到,获得积分10
刚刚
小米完成签到,获得积分10
刚刚
幺鸡豆子发布了新的文献求助10
1秒前
xiaohunagya发布了新的文献求助10
2秒前
刻苦惜萍发布了新的文献求助10
3秒前
annie完成签到,获得积分10
4秒前
sddwx完成签到,获得积分20
5秒前
星star完成签到 ,获得积分10
5秒前
闲人小年完成签到 ,获得积分10
7秒前
哆啦B梦完成签到,获得积分10
7秒前
赫连人杰完成签到,获得积分10
8秒前
伶俐的千凡完成签到,获得积分10
8秒前
9秒前
幺鸡豆子完成签到,获得积分20
11秒前
qwp完成签到,获得积分10
12秒前
13秒前
YSY完成签到,获得积分10
13秒前
sinn17完成签到,获得积分10
14秒前
zhengyue2233完成签到,获得积分10
17秒前
腼腆的十八完成签到,获得积分10
20秒前
淡淡依霜完成签到 ,获得积分10
21秒前
simongao完成签到 ,获得积分10
21秒前
happpy完成签到,获得积分10
22秒前
22秒前
24秒前
ran完成签到 ,获得积分10
25秒前
平常莹芝完成签到,获得积分10
26秒前
小鱼医生完成签到 ,获得积分10
26秒前
小哈完成签到 ,获得积分10
29秒前
小杭76应助腼腆的十八采纳,获得10
29秒前
无与伦比完成签到 ,获得积分10
29秒前
曾经碧蓉完成签到,获得积分10
30秒前
30秒前
瓜兵是官爷完成签到,获得积分10
31秒前
zheyu完成签到,获得积分10
32秒前
嗯呢完成签到 ,获得积分10
32秒前
树上种树完成签到 ,获得积分20
32秒前
午木完成签到,获得积分10
33秒前
冯宇完成签到,获得积分10
33秒前
Jj完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304495
求助须知:如何正确求助?哪些是违规求助? 4450995
关于积分的说明 13850260
捐赠科研通 4338051
什么是DOI,文献DOI怎么找? 2381778
邀请新用户注册赠送积分活动 1376865
关于科研通互助平台的介绍 1344153