An Overview of the Free Energy Principle and Related Research

强化学习 生成语法 感知 人工智能 生成模型 自由能原理 计算机科学 推论 推论 功能(生物学) 认知科学 领域(数学分析) 机器学习 人机交互 心理学 数学 生物 进化生物学 数学分析 神经科学 纯数学
作者
Zhengquan Zhang,Feng Xu
出处
期刊:Neural Computation [MIT Press]
卷期号:36 (5): 963-1021
标识
DOI:10.1162/neco_a_01642
摘要

Abstract The free energy principle and its corollary, the active inference framework, serve as theoretical foundations in the domain of neuroscience, explaining the genesis of intelligent behavior. This principle states that the processes of perception, learning, and decision making—within an agent—are all driven by the objective of “minimizing free energy,” evincing the following behaviors: learning and employing a generative model of the environment to interpret observations, thereby achieving perception, and selecting actions to maintain a stable preferred state and minimize the uncertainty about the environment, thereby achieving decision making. This fundamental principle can be used to explain how the brain processes perceptual information, learns about the environment, and selects actions. Two pivotal tenets are that the agent employs a generative model for perception and planning and that interaction with the world (and other agents) enhances the performance of the generative model and augments perception. With the evolution of control theory and deep learning tools, agents based on the FEP have been instantiated in various ways across different domains, guiding the design of a multitude of generative models and decision-making algorithms. This letter first introduces the basic concepts of the FEP, followed by its historical development and connections with other theories of intelligence, and then delves into the specific application of the FEP to perception and decision making, encompassing both low-dimensional simple situations and high-dimensional complex situations. It compares the FEP with model-based reinforcement learning to show that the FEP provides a better objective function. We illustrate this using numerical studies of Dreamer3 by adding expected information gain into the standard objective function. In a complementary fashion, existing reinforcement learning, and deep learning algorithms can also help implement the FEP-based agents. Finally, we discuss the various capabilities that agents need to possess in complex environments and state that the FEP can aid agents in acquiring these capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助外向芫采纳,获得10
1秒前
靓丽安珊完成签到 ,获得积分10
2秒前
edward完成签到,获得积分10
4秒前
Orange应助拾意采纳,获得10
4秒前
icreat完成签到,获得积分10
4秒前
妮妮发布了新的文献求助10
6秒前
闪闪白亦完成签到 ,获得积分10
6秒前
Iridesent0v0发布了新的文献求助10
6秒前
渠安发布了新的文献求助30
8秒前
科研通AI2S应助木习习采纳,获得10
8秒前
闪闪白亦关注了科研通微信公众号
10秒前
10秒前
10秒前
Iridesent0v0完成签到,获得积分10
12秒前
gogogo完成签到,获得积分10
13秒前
13秒前
活力的尔阳完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
15秒前
木习习完成签到,获得积分10
15秒前
bkagyin应助亦玉采纳,获得10
15秒前
15秒前
15秒前
爱吃肉肉的手性分子完成签到,获得积分10
16秒前
17秒前
拾意发布了新的文献求助10
18秒前
岁岁完成签到 ,获得积分10
19秒前
belly发布了新的文献求助10
19秒前
木习习发布了新的文献求助10
20秒前
20秒前
20秒前
Su发布了新的文献求助10
20秒前
可靠板栗完成签到,获得积分10
21秒前
kjc完成签到 ,获得积分10
21秒前
22秒前
地球为何自转完成签到,获得积分10
24秒前
搜集达人应助坚强的严青采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474