An Overview of the Free Energy Principle and Related Research

强化学习 生成语法 感知 人工智能 生成模型 自由能原理 计算机科学 推论 推论 功能(生物学) 认知科学 领域(数学分析) 机器学习 人机交互 心理学 数学 生物 进化生物学 数学分析 神经科学 纯数学
作者
Zhengquan Zhang,Feng Xu
出处
期刊:Neural Computation [MIT Press]
卷期号:36 (5): 963-1021
标识
DOI:10.1162/neco_a_01642
摘要

Abstract The free energy principle and its corollary, the active inference framework, serve as theoretical foundations in the domain of neuroscience, explaining the genesis of intelligent behavior. This principle states that the processes of perception, learning, and decision making—within an agent—are all driven by the objective of “minimizing free energy,” evincing the following behaviors: learning and employing a generative model of the environment to interpret observations, thereby achieving perception, and selecting actions to maintain a stable preferred state and minimize the uncertainty about the environment, thereby achieving decision making. This fundamental principle can be used to explain how the brain processes perceptual information, learns about the environment, and selects actions. Two pivotal tenets are that the agent employs a generative model for perception and planning and that interaction with the world (and other agents) enhances the performance of the generative model and augments perception. With the evolution of control theory and deep learning tools, agents based on the FEP have been instantiated in various ways across different domains, guiding the design of a multitude of generative models and decision-making algorithms. This letter first introduces the basic concepts of the FEP, followed by its historical development and connections with other theories of intelligence, and then delves into the specific application of the FEP to perception and decision making, encompassing both low-dimensional simple situations and high-dimensional complex situations. It compares the FEP with model-based reinforcement learning to show that the FEP provides a better objective function. We illustrate this using numerical studies of Dreamer3 by adding expected information gain into the standard objective function. In a complementary fashion, existing reinforcement learning, and deep learning algorithms can also help implement the FEP-based agents. Finally, we discuss the various capabilities that agents need to possess in complex environments and state that the FEP can aid agents in acquiring these capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tang发布了新的文献求助10
刚刚
rigelfalcon完成签到,获得积分10
刚刚
倚楼听风雨完成签到 ,获得积分10
1秒前
帆帆帆完成签到 ,获得积分10
7秒前
shhoing应助科研通管家采纳,获得10
17秒前
18秒前
shhoing应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
znchick完成签到,获得积分10
20秒前
adovj完成签到 ,获得积分10
28秒前
谓易ing完成签到 ,获得积分10
29秒前
抹茶肥肠完成签到,获得积分10
30秒前
arniu2008完成签到,获得积分10
32秒前
CyberHamster完成签到,获得积分0
34秒前
优雅的WAN完成签到 ,获得积分10
53秒前
LiangRen完成签到 ,获得积分10
56秒前
lorentzh完成签到,获得积分10
1分钟前
王王的狗子完成签到 ,获得积分10
1分钟前
qinghe完成签到 ,获得积分10
1分钟前
Arctic完成签到 ,获得积分10
1分钟前
娜娜完成签到 ,获得积分10
1分钟前
疯狂的绿蝶完成签到 ,获得积分10
1分钟前
kanong完成签到,获得积分0
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
1分钟前
冷静冰萍完成签到 ,获得积分10
1分钟前
Ellalala完成签到 ,获得积分10
1分钟前
直率若烟完成签到 ,获得积分10
2分钟前
111完成签到 ,获得积分10
2分钟前
肥仔完成签到 ,获得积分10
2分钟前
领导范儿应助科研通管家采纳,获得30
2分钟前
雪茶完成签到 ,获得积分10
2分钟前
hulahula完成签到 ,获得积分10
2分钟前
呼啦呼啦完成签到 ,获得积分10
2分钟前
迅速千愁完成签到 ,获得积分10
2分钟前
Whenryuan完成签到 ,获得积分10
2分钟前
忧心的藏鸟完成签到 ,获得积分10
2分钟前
顺心寄容完成签到,获得积分10
2分钟前
34101127完成签到 ,获得积分10
2分钟前
明朗完成签到 ,获得积分0
2分钟前
kyokyoro完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561691
求助须知:如何正确求助?哪些是违规求助? 4646757
关于积分的说明 14678936
捐赠科研通 4588144
什么是DOI,文献DOI怎么找? 2517327
邀请新用户注册赠送积分活动 1490632
关于科研通互助平台的介绍 1461721