An Overview of the Free Energy Principle and Related Research

强化学习 生成语法 感知 人工智能 生成模型 自由能原理 计算机科学 推论 推论 功能(生物学) 认知科学 领域(数学分析) 机器学习 人机交互 心理学 数学 生物 进化生物学 数学分析 神经科学 纯数学
作者
Zhengquan Zhang,Feng Xu
出处
期刊:Neural Computation [MIT Press]
卷期号:36 (5): 963-1021
标识
DOI:10.1162/neco_a_01642
摘要

Abstract The free energy principle and its corollary, the active inference framework, serve as theoretical foundations in the domain of neuroscience, explaining the genesis of intelligent behavior. This principle states that the processes of perception, learning, and decision making—within an agent—are all driven by the objective of “minimizing free energy,” evincing the following behaviors: learning and employing a generative model of the environment to interpret observations, thereby achieving perception, and selecting actions to maintain a stable preferred state and minimize the uncertainty about the environment, thereby achieving decision making. This fundamental principle can be used to explain how the brain processes perceptual information, learns about the environment, and selects actions. Two pivotal tenets are that the agent employs a generative model for perception and planning and that interaction with the world (and other agents) enhances the performance of the generative model and augments perception. With the evolution of control theory and deep learning tools, agents based on the FEP have been instantiated in various ways across different domains, guiding the design of a multitude of generative models and decision-making algorithms. This letter first introduces the basic concepts of the FEP, followed by its historical development and connections with other theories of intelligence, and then delves into the specific application of the FEP to perception and decision making, encompassing both low-dimensional simple situations and high-dimensional complex situations. It compares the FEP with model-based reinforcement learning to show that the FEP provides a better objective function. We illustrate this using numerical studies of Dreamer3 by adding expected information gain into the standard objective function. In a complementary fashion, existing reinforcement learning, and deep learning algorithms can also help implement the FEP-based agents. Finally, we discuss the various capabilities that agents need to possess in complex environments and state that the FEP can aid agents in acquiring these capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vyasa完成签到,获得积分10
刚刚
小马甲应助大气靳采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
小蘑菇应助黄伟凯采纳,获得10
2秒前
L~完成签到,获得积分10
3秒前
cc举报wenzi96求助涉嫌违规
3秒前
ChiariRay完成签到,获得积分10
4秒前
Forever完成签到 ,获得积分10
4秒前
4秒前
光亮亦竹完成签到 ,获得积分10
6秒前
6秒前
Shumaila发布了新的文献求助10
6秒前
7秒前
7秒前
魔幻灵煌发布了新的文献求助10
8秒前
Lucas应助淡定采纳,获得10
8秒前
yyds发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
chimchim完成签到,获得积分10
9秒前
keyan完成签到,获得积分10
10秒前
nostalgic完成签到,获得积分10
12秒前
小刺猬发布了新的文献求助30
12秒前
chimchim发布了新的文献求助10
12秒前
12秒前
berg发布了新的文献求助10
12秒前
ll完成签到,获得积分10
12秒前
liyangyang完成签到,获得积分10
13秒前
gawang发布了新的文献求助30
13秒前
xfwang完成签到,获得积分10
14秒前
共享精神应助棋士采纳,获得10
14秒前
啊喔完成签到,获得积分20
15秒前
小巧的诗双完成签到,获得积分20
15秒前
老卜素完成签到 ,获得积分10
16秒前
lars完成签到 ,获得积分10
17秒前
魔幻灵煌完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425