An Overview of the Free Energy Principle and Related Research

强化学习 生成语法 感知 人工智能 生成模型 自由能原理 计算机科学 推论 推论 功能(生物学) 认知科学 领域(数学分析) 机器学习 人机交互 心理学 数学 生物 进化生物学 数学分析 神经科学 纯数学
作者
Zhengquan Zhang,Feng Xu
出处
期刊:Neural Computation [MIT Press]
卷期号:36 (5): 963-1021
标识
DOI:10.1162/neco_a_01642
摘要

Abstract The free energy principle and its corollary, the active inference framework, serve as theoretical foundations in the domain of neuroscience, explaining the genesis of intelligent behavior. This principle states that the processes of perception, learning, and decision making—within an agent—are all driven by the objective of “minimizing free energy,” evincing the following behaviors: learning and employing a generative model of the environment to interpret observations, thereby achieving perception, and selecting actions to maintain a stable preferred state and minimize the uncertainty about the environment, thereby achieving decision making. This fundamental principle can be used to explain how the brain processes perceptual information, learns about the environment, and selects actions. Two pivotal tenets are that the agent employs a generative model for perception and planning and that interaction with the world (and other agents) enhances the performance of the generative model and augments perception. With the evolution of control theory and deep learning tools, agents based on the FEP have been instantiated in various ways across different domains, guiding the design of a multitude of generative models and decision-making algorithms. This letter first introduces the basic concepts of the FEP, followed by its historical development and connections with other theories of intelligence, and then delves into the specific application of the FEP to perception and decision making, encompassing both low-dimensional simple situations and high-dimensional complex situations. It compares the FEP with model-based reinforcement learning to show that the FEP provides a better objective function. We illustrate this using numerical studies of Dreamer3 by adding expected information gain into the standard objective function. In a complementary fashion, existing reinforcement learning, and deep learning algorithms can also help implement the FEP-based agents. Finally, we discuss the various capabilities that agents need to possess in complex environments and state that the FEP can aid agents in acquiring these capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吕健发布了新的文献求助10
1秒前
3秒前
4秒前
4秒前
科研通AI6应助路纹婷采纳,获得10
4秒前
luanzhaohui发布了新的文献求助10
5秒前
6秒前
还单身的老虎完成签到,获得积分10
6秒前
Nicole关注了科研通微信公众号
6秒前
zcj发布了新的文献求助30
8秒前
wangnn完成签到,获得积分10
8秒前
LiYupan发布了新的文献求助30
9秒前
叶成会完成签到,获得积分10
10秒前
传统的丹雪完成签到 ,获得积分10
10秒前
10秒前
吕健完成签到,获得积分10
13秒前
无语的蛋堡发布了新的文献求助100
13秒前
自觉绿草发布了新的文献求助10
14秒前
14秒前
细腻雨莲完成签到,获得积分10
14秒前
pearlwh1227发布了新的文献求助10
17秒前
研友_VZG7GZ应助lynn采纳,获得10
18秒前
正直敏完成签到,获得积分10
19秒前
flower发布了新的文献求助10
19秒前
20秒前
失眠的蓝完成签到,获得积分10
22秒前
科研通AI6应助xxx采纳,获得30
23秒前
gyhmm完成签到,获得积分10
23秒前
yy完成签到,获得积分20
24秒前
24秒前
bin_yao发布了新的文献求助10
25秒前
科研通AI6应助自觉绿草采纳,获得10
26秒前
26秒前
28秒前
28秒前
30秒前
31秒前
32秒前
可爱的函函应助槿裡采纳,获得30
32秒前
量子星尘发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536933
求助须知:如何正确求助?哪些是违规求助? 4624592
关于积分的说明 14592446
捐赠科研通 4565023
什么是DOI,文献DOI怎么找? 2502125
邀请新用户注册赠送积分活动 1480875
关于科研通互助平台的介绍 1452098