An Overview of the Free Energy Principle and Related Research

强化学习 生成语法 感知 人工智能 生成模型 自由能原理 计算机科学 推论 推论 功能(生物学) 认知科学 领域(数学分析) 机器学习 人机交互 心理学 数学 生物 进化生物学 数学分析 神经科学 纯数学
作者
Zhengquan Zhang,Feng Xu
出处
期刊:Neural Computation [MIT Press]
卷期号:36 (5): 963-1021
标识
DOI:10.1162/neco_a_01642
摘要

Abstract The free energy principle and its corollary, the active inference framework, serve as theoretical foundations in the domain of neuroscience, explaining the genesis of intelligent behavior. This principle states that the processes of perception, learning, and decision making—within an agent—are all driven by the objective of “minimizing free energy,” evincing the following behaviors: learning and employing a generative model of the environment to interpret observations, thereby achieving perception, and selecting actions to maintain a stable preferred state and minimize the uncertainty about the environment, thereby achieving decision making. This fundamental principle can be used to explain how the brain processes perceptual information, learns about the environment, and selects actions. Two pivotal tenets are that the agent employs a generative model for perception and planning and that interaction with the world (and other agents) enhances the performance of the generative model and augments perception. With the evolution of control theory and deep learning tools, agents based on the FEP have been instantiated in various ways across different domains, guiding the design of a multitude of generative models and decision-making algorithms. This letter first introduces the basic concepts of the FEP, followed by its historical development and connections with other theories of intelligence, and then delves into the specific application of the FEP to perception and decision making, encompassing both low-dimensional simple situations and high-dimensional complex situations. It compares the FEP with model-based reinforcement learning to show that the FEP provides a better objective function. We illustrate this using numerical studies of Dreamer3 by adding expected information gain into the standard objective function. In a complementary fashion, existing reinforcement learning, and deep learning algorithms can also help implement the FEP-based agents. Finally, we discuss the various capabilities that agents need to possess in complex environments and state that the FEP can aid agents in acquiring these capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻的向薇完成签到,获得积分10
1秒前
桐桐应助西柚子采纳,获得10
1秒前
1秒前
飘飘完成签到 ,获得积分10
2秒前
aaa完成签到,获得积分10
2秒前
hanshishengye完成签到 ,获得积分10
4秒前
5秒前
5秒前
666完成签到,获得积分10
7秒前
11完成签到,获得积分10
9秒前
10秒前
六尺巷完成签到,获得积分10
10秒前
12秒前
做好自己发布了新的文献求助10
13秒前
轻松书白完成签到,获得积分10
14秒前
烂漫香水完成签到 ,获得积分10
14秒前
15秒前
15秒前
15秒前
sai完成签到,获得积分10
17秒前
17秒前
充电宝应助做好自己采纳,获得10
18秒前
gopher完成签到,获得积分10
19秒前
阿六儿完成签到,获得积分10
19秒前
鸡枞发布了新的文献求助10
19秒前
21秒前
mzhmhy完成签到,获得积分10
22秒前
崔梦楠完成签到 ,获得积分10
22秒前
nlwsp完成签到 ,获得积分10
26秒前
liu驳回了爆米花应助
28秒前
orixero应助鸡枞采纳,获得10
28秒前
李小羊完成签到,获得积分10
29秒前
风趣的芒果完成签到,获得积分10
30秒前
Heiclry完成签到 ,获得积分10
33秒前
Auriga完成签到,获得积分10
35秒前
健壮的凝冬完成签到 ,获得积分10
36秒前
万能图书馆应助li采纳,获得10
38秒前
39秒前
黄颖完成签到,获得积分10
39秒前
鸡枞完成签到,获得积分10
40秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378975
求助须知:如何正确求助?哪些是违规求助? 4503349
关于积分的说明 14015585
捐赠科研通 4412079
什么是DOI,文献DOI怎么找? 2423655
邀请新用户注册赠送积分活动 1416558
关于科研通互助平台的介绍 1394065