An Overview of the Free Energy Principle and Related Research

强化学习 生成语法 感知 人工智能 生成模型 自由能原理 计算机科学 推论 推论 功能(生物学) 认知科学 领域(数学分析) 机器学习 人机交互 心理学 数学 生物 进化生物学 数学分析 神经科学 纯数学
作者
Zhengquan Zhang,Feng Xu
出处
期刊:Neural Computation [The MIT Press]
卷期号:36 (5): 963-1021
标识
DOI:10.1162/neco_a_01642
摘要

Abstract The free energy principle and its corollary, the active inference framework, serve as theoretical foundations in the domain of neuroscience, explaining the genesis of intelligent behavior. This principle states that the processes of perception, learning, and decision making—within an agent—are all driven by the objective of “minimizing free energy,” evincing the following behaviors: learning and employing a generative model of the environment to interpret observations, thereby achieving perception, and selecting actions to maintain a stable preferred state and minimize the uncertainty about the environment, thereby achieving decision making. This fundamental principle can be used to explain how the brain processes perceptual information, learns about the environment, and selects actions. Two pivotal tenets are that the agent employs a generative model for perception and planning and that interaction with the world (and other agents) enhances the performance of the generative model and augments perception. With the evolution of control theory and deep learning tools, agents based on the FEP have been instantiated in various ways across different domains, guiding the design of a multitude of generative models and decision-making algorithms. This letter first introduces the basic concepts of the FEP, followed by its historical development and connections with other theories of intelligence, and then delves into the specific application of the FEP to perception and decision making, encompassing both low-dimensional simple situations and high-dimensional complex situations. It compares the FEP with model-based reinforcement learning to show that the FEP provides a better objective function. We illustrate this using numerical studies of Dreamer3 by adding expected information gain into the standard objective function. In a complementary fashion, existing reinforcement learning, and deep learning algorithms can also help implement the FEP-based agents. Finally, we discuss the various capabilities that agents need to possess in complex environments and state that the FEP can aid agents in acquiring these capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助HJ采纳,获得30
刚刚
lily发布了新的文献求助10
1秒前
李小新发布了新的文献求助10
1秒前
1秒前
hyue发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
落后的灵寒完成签到,获得积分10
4秒前
云中漫步完成签到,获得积分10
4秒前
raquelle完成签到,获得积分10
4秒前
5秒前
脑洞疼应助李小新采纳,获得10
5秒前
你也爱抽二手烟吗完成签到,获得积分10
6秒前
echo发布了新的文献求助10
6秒前
Murray发布了新的文献求助10
7秒前
7秒前
raquelle发布了新的文献求助10
7秒前
晓布衣完成签到,获得积分10
7秒前
香蕉觅云应助lucky采纳,获得10
7秒前
7秒前
8秒前
8秒前
花卷兔兔完成签到 ,获得积分10
9秒前
lalala发布了新的文献求助10
9秒前
19111867526完成签到,获得积分10
9秒前
白鱼发布了新的文献求助10
9秒前
霸气的不尤完成签到 ,获得积分10
11秒前
今后应助郑蒸日上采纳,获得10
11秒前
12秒前
xcr完成签到,获得积分10
12秒前
CodeCraft应助小白一号采纳,获得30
12秒前
Nature发布了新的文献求助10
13秒前
李健的小迷弟应助小郭采纳,获得10
13秒前
13秒前
燕亦瑶完成签到,获得积分10
13秒前
boboko发布了新的文献求助10
13秒前
安德鲁完成签到,获得积分10
14秒前
一蓑烟雨任平生完成签到,获得积分0
15秒前
寄草完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585774
求助须知:如何正确求助?哪些是违规求助? 4002441
关于积分的说明 12390234
捐赠科研通 3678492
什么是DOI,文献DOI怎么找? 2027418
邀请新用户注册赠送积分活动 1060929
科研通“疑难数据库(出版商)”最低求助积分说明 947342