An Overview of the Free Energy Principle and Related Research

强化学习 生成语法 感知 人工智能 生成模型 自由能原理 计算机科学 推论 推论 功能(生物学) 认知科学 领域(数学分析) 机器学习 人机交互 心理学 数学 数学分析 神经科学 进化生物学 纯数学 生物
作者
Zhengquan Zhang,Feng Xu
出处
期刊:Neural Computation [The MIT Press]
卷期号:36 (5): 963-1021
标识
DOI:10.1162/neco_a_01642
摘要

Abstract The free energy principle and its corollary, the active inference framework, serve as theoretical foundations in the domain of neuroscience, explaining the genesis of intelligent behavior. This principle states that the processes of perception, learning, and decision making—within an agent—are all driven by the objective of “minimizing free energy,” evincing the following behaviors: learning and employing a generative model of the environment to interpret observations, thereby achieving perception, and selecting actions to maintain a stable preferred state and minimize the uncertainty about the environment, thereby achieving decision making. This fundamental principle can be used to explain how the brain processes perceptual information, learns about the environment, and selects actions. Two pivotal tenets are that the agent employs a generative model for perception and planning and that interaction with the world (and other agents) enhances the performance of the generative model and augments perception. With the evolution of control theory and deep learning tools, agents based on the FEP have been instantiated in various ways across different domains, guiding the design of a multitude of generative models and decision-making algorithms. This letter first introduces the basic concepts of the FEP, followed by its historical development and connections with other theories of intelligence, and then delves into the specific application of the FEP to perception and decision making, encompassing both low-dimensional simple situations and high-dimensional complex situations. It compares the FEP with model-based reinforcement learning to show that the FEP provides a better objective function. We illustrate this using numerical studies of Dreamer3 by adding expected information gain into the standard objective function. In a complementary fashion, existing reinforcement learning, and deep learning algorithms can also help implement the FEP-based agents. Finally, we discuss the various capabilities that agents need to possess in complex environments and state that the FEP can aid agents in acquiring these capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月中天完成签到,获得积分10
1秒前
2秒前
2秒前
傲娇的蛋挞完成签到,获得积分10
3秒前
你好发布了新的文献求助10
3秒前
小于完成签到,获得积分10
4秒前
涵霸天完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
在水一方应助谨慎的猫咪采纳,获得10
6秒前
中国大陆应助MNing采纳,获得10
6秒前
琉璃岁月发布了新的文献求助10
6秒前
HL发布了新的文献求助10
6秒前
周运完成签到 ,获得积分10
7秒前
专注的轻发布了新的文献求助10
8秒前
9秒前
超级的煎饼完成签到,获得积分10
9秒前
wym完成签到,获得积分10
10秒前
10秒前
11秒前
传奇3应助岳努努采纳,获得10
12秒前
LIU完成签到,获得积分10
12秒前
bbbbbshwushq发布了新的文献求助10
13秒前
哆啦的空间站应助听雨采纳,获得10
14秒前
15秒前
16秒前
16秒前
丘离完成签到,获得积分10
16秒前
淡淡的秋寒完成签到,获得积分10
17秒前
wyblobin完成签到,获得积分10
17秒前
Criminology34应助启原采纳,获得50
18秒前
19秒前
CC发布了新的文献求助10
19秒前
19秒前
19秒前
科研通AI5应助小达采纳,获得10
20秒前
Ann发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911216
求助须知:如何正确求助?哪些是违规求助? 4186705
关于积分的说明 13001055
捐赠科研通 3954531
什么是DOI,文献DOI怎么找? 2168334
邀请新用户注册赠送积分活动 1186721
关于科研通互助平台的介绍 1094125