已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Overview of the Free Energy Principle and Related Research

强化学习 生成语法 感知 人工智能 生成模型 自由能原理 计算机科学 推论 推论 功能(生物学) 认知科学 领域(数学分析) 机器学习 人机交互 心理学 数学 数学分析 神经科学 进化生物学 纯数学 生物
作者
Zhengquan Zhang,Feng Xu
出处
期刊:Neural Computation [MIT Press]
卷期号:36 (5): 963-1021
标识
DOI:10.1162/neco_a_01642
摘要

Abstract The free energy principle and its corollary, the active inference framework, serve as theoretical foundations in the domain of neuroscience, explaining the genesis of intelligent behavior. This principle states that the processes of perception, learning, and decision making—within an agent—are all driven by the objective of “minimizing free energy,” evincing the following behaviors: learning and employing a generative model of the environment to interpret observations, thereby achieving perception, and selecting actions to maintain a stable preferred state and minimize the uncertainty about the environment, thereby achieving decision making. This fundamental principle can be used to explain how the brain processes perceptual information, learns about the environment, and selects actions. Two pivotal tenets are that the agent employs a generative model for perception and planning and that interaction with the world (and other agents) enhances the performance of the generative model and augments perception. With the evolution of control theory and deep learning tools, agents based on the FEP have been instantiated in various ways across different domains, guiding the design of a multitude of generative models and decision-making algorithms. This letter first introduces the basic concepts of the FEP, followed by its historical development and connections with other theories of intelligence, and then delves into the specific application of the FEP to perception and decision making, encompassing both low-dimensional simple situations and high-dimensional complex situations. It compares the FEP with model-based reinforcement learning to show that the FEP provides a better objective function. We illustrate this using numerical studies of Dreamer3 by adding expected information gain into the standard objective function. In a complementary fashion, existing reinforcement learning, and deep learning algorithms can also help implement the FEP-based agents. Finally, we discuss the various capabilities that agents need to possess in complex environments and state that the FEP can aid agents in acquiring these capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yatou完成签到,获得积分20
1秒前
2秒前
陆驳发布了新的文献求助10
2秒前
100完成签到,获得积分10
3秒前
科研通AI6应助小白采纳,获得10
3秒前
cccccc完成签到 ,获得积分10
4秒前
YZChen完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
zhukun1014发布了新的文献求助10
6秒前
7秒前
滴滴答发布了新的文献求助10
7秒前
123study0完成签到,获得积分10
9秒前
Ava应助吴未采纳,获得10
9秒前
行走的绅士完成签到,获得积分10
9秒前
jerry完成签到,获得积分10
10秒前
11秒前
PJT417发布了新的文献求助10
11秒前
nn发布了新的文献求助10
12秒前
jerry发布了新的文献求助10
13秒前
orixero应助微笑咖啡豆采纳,获得10
15秒前
XDSH完成签到 ,获得积分10
16秒前
123完成签到,获得积分10
18秒前
shine完成签到,获得积分10
19秒前
顺利顺利完成签到 ,获得积分10
20秒前
20秒前
21秒前
21秒前
Jasper应助yx采纳,获得10
21秒前
PJT417完成签到,获得积分20
22秒前
tuanheqi应助NEKO采纳,获得50
23秒前
有趣的银完成签到,获得积分10
23秒前
飞快的孱完成签到,获得积分10
24秒前
星辰大海应助青竹采纳,获得10
24秒前
萨利发布了新的文献求助10
25秒前
Auralis完成签到 ,获得积分10
26秒前
hhh完成签到,获得积分10
26秒前
拉拉LA发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522356
求助须知:如何正确求助?哪些是违规求助? 4613399
关于积分的说明 14538602
捐赠科研通 4551100
什么是DOI,文献DOI怎么找? 2493968
邀请新用户注册赠送积分活动 1475030
关于科研通互助平台的介绍 1446408