An Overview of the Free Energy Principle and Related Research

强化学习 生成语法 感知 人工智能 生成模型 自由能原理 计算机科学 推论 推论 功能(生物学) 认知科学 领域(数学分析) 机器学习 人机交互 心理学 数学 数学分析 神经科学 进化生物学 纯数学 生物
作者
Zhengquan Zhang,Feng Xu
出处
期刊:Neural Computation [MIT Press]
卷期号:36 (5): 963-1021
标识
DOI:10.1162/neco_a_01642
摘要

Abstract The free energy principle and its corollary, the active inference framework, serve as theoretical foundations in the domain of neuroscience, explaining the genesis of intelligent behavior. This principle states that the processes of perception, learning, and decision making—within an agent—are all driven by the objective of “minimizing free energy,” evincing the following behaviors: learning and employing a generative model of the environment to interpret observations, thereby achieving perception, and selecting actions to maintain a stable preferred state and minimize the uncertainty about the environment, thereby achieving decision making. This fundamental principle can be used to explain how the brain processes perceptual information, learns about the environment, and selects actions. Two pivotal tenets are that the agent employs a generative model for perception and planning and that interaction with the world (and other agents) enhances the performance of the generative model and augments perception. With the evolution of control theory and deep learning tools, agents based on the FEP have been instantiated in various ways across different domains, guiding the design of a multitude of generative models and decision-making algorithms. This letter first introduces the basic concepts of the FEP, followed by its historical development and connections with other theories of intelligence, and then delves into the specific application of the FEP to perception and decision making, encompassing both low-dimensional simple situations and high-dimensional complex situations. It compares the FEP with model-based reinforcement learning to show that the FEP provides a better objective function. We illustrate this using numerical studies of Dreamer3 by adding expected information gain into the standard objective function. In a complementary fashion, existing reinforcement learning, and deep learning algorithms can also help implement the FEP-based agents. Finally, we discuss the various capabilities that agents need to possess in complex environments and state that the FEP can aid agents in acquiring these capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Forever发布了新的文献求助20
1秒前
石夜一觞完成签到,获得积分10
1秒前
Lucas应助zzz采纳,获得10
2秒前
3秒前
ljs完成签到,获得积分10
3秒前
4秒前
luluyang发布了新的文献求助50
4秒前
4秒前
4秒前
FashionBoy应助纯真硬币采纳,获得10
4秒前
勤奋青寒完成签到,获得积分10
4秒前
754完成签到,获得积分10
5秒前
小潘完成签到 ,获得积分10
5秒前
james完成签到,获得积分10
6秒前
咕咕完成签到,获得积分10
6秒前
hlchian完成签到,获得积分10
7秒前
CZF完成签到,获得积分10
7秒前
超哥完成签到,获得积分10
7秒前
在水一方应助栗子采纳,获得10
7秒前
顾矜应助同福采纳,获得10
8秒前
8秒前
B_snow发布了新的文献求助30
9秒前
Suagy发布了新的文献求助10
9秒前
沉默毛衣完成签到,获得积分10
9秒前
香蕉觅云应助evan采纳,获得10
9秒前
yue发布了新的文献求助10
9秒前
9秒前
怕黑的纸鹤完成签到 ,获得积分10
10秒前
10秒前
you完成签到,获得积分10
10秒前
念心发布了新的文献求助10
10秒前
畅快的书包完成签到,获得积分10
11秒前
大个应助Forever采纳,获得10
11秒前
梦想去广州当靓仔完成签到 ,获得积分10
11秒前
Linly完成签到,获得积分10
12秒前
桐桐应助满意非笑采纳,获得10
12秒前
蝉鸣完成签到,获得积分10
12秒前
zzz发布了新的文献求助10
14秒前
第二十篇完成签到,获得积分10
14秒前
qiongqiong完成签到,获得积分10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143088
求助须知:如何正确求助?哪些是违规求助? 2794180
关于积分的说明 7810221
捐赠科研通 2450424
什么是DOI,文献DOI怎么找? 1303824
科研通“疑难数据库(出版商)”最低求助积分说明 627066
版权声明 601384