An Overview of the Free Energy Principle and Related Research

强化学习 生成语法 感知 人工智能 生成模型 自由能原理 计算机科学 推论 推论 功能(生物学) 认知科学 领域(数学分析) 机器学习 人机交互 心理学 数学 数学分析 神经科学 进化生物学 纯数学 生物
作者
Zhengquan Zhang,Feng Xu
出处
期刊:Neural Computation [The MIT Press]
卷期号:36 (5): 963-1021
标识
DOI:10.1162/neco_a_01642
摘要

Abstract The free energy principle and its corollary, the active inference framework, serve as theoretical foundations in the domain of neuroscience, explaining the genesis of intelligent behavior. This principle states that the processes of perception, learning, and decision making—within an agent—are all driven by the objective of “minimizing free energy,” evincing the following behaviors: learning and employing a generative model of the environment to interpret observations, thereby achieving perception, and selecting actions to maintain a stable preferred state and minimize the uncertainty about the environment, thereby achieving decision making. This fundamental principle can be used to explain how the brain processes perceptual information, learns about the environment, and selects actions. Two pivotal tenets are that the agent employs a generative model for perception and planning and that interaction with the world (and other agents) enhances the performance of the generative model and augments perception. With the evolution of control theory and deep learning tools, agents based on the FEP have been instantiated in various ways across different domains, guiding the design of a multitude of generative models and decision-making algorithms. This letter first introduces the basic concepts of the FEP, followed by its historical development and connections with other theories of intelligence, and then delves into the specific application of the FEP to perception and decision making, encompassing both low-dimensional simple situations and high-dimensional complex situations. It compares the FEP with model-based reinforcement learning to show that the FEP provides a better objective function. We illustrate this using numerical studies of Dreamer3 by adding expected information gain into the standard objective function. In a complementary fashion, existing reinforcement learning, and deep learning algorithms can also help implement the FEP-based agents. Finally, we discuss the various capabilities that agents need to possess in complex environments and state that the FEP can aid agents in acquiring these capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒淇关注了科研通微信公众号
刚刚
1秒前
3秒前
氿囶发布了新的文献求助10
3秒前
媛57完成签到,获得积分20
3秒前
十一发布了新的文献求助10
5秒前
5秒前
白剑通完成签到,获得积分10
9秒前
liyu发布了新的文献求助10
10秒前
可爱的函函应助qq采纳,获得10
10秒前
文献通关注了科研通微信公众号
11秒前
12秒前
16秒前
17秒前
SSY发布了新的文献求助10
17秒前
有魅力的电脑完成签到,获得积分10
19秒前
梦若浮生发布了新的文献求助10
19秒前
21秒前
欢呼忆丹完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
23秒前
过氧化氢应助ylq采纳,获得10
23秒前
huangsi发布了新的文献求助10
23秒前
杨思睿发布了新的文献求助10
24秒前
26秒前
27秒前
宝宝发布了新的文献求助10
28秒前
烂漫的飞松完成签到,获得积分10
28秒前
28秒前
Ode发布了新的文献求助10
28秒前
29秒前
杨思睿完成签到,获得积分10
31秒前
31秒前
Hatexist应助仙都丽娜采纳,获得30
32秒前
欢檬应助安生采纳,获得10
32秒前
王铂然发布了新的文献求助10
34秒前
祥子的骆驼完成签到,获得积分10
34秒前
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260505
捐赠科研通 3272347
什么是DOI,文献DOI怎么找? 1805732
邀请新用户注册赠送积分活动 882637
科研通“疑难数据库(出版商)”最低求助积分说明 809425