亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention-Based Multiscale Feature Fusion for Efficient Surface Defect Detection

计算机科学 人工智能 特征(语言学) 融合 模式识别(心理学) 传感器融合 特征提取 材料科学 语言学 哲学
作者
Yuhao Zhao,Qing Liu,Hu Su,Jiabin Zhang,Hongxuan Ma,Wei Zou,Song Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-10 被引量:2
标识
DOI:10.1109/tim.2024.3372229
摘要

Deep-learning-based detection methods have been widely applied to industrial defect inspection. However, directly using vanilla detection methods fails to achieve satisfying performance due to the lack of identifiable features. In this paper, a novel attention-based multi-scale feature fusion method (AMFF) is proposed, aiming to enhance defect features and improve defect identification by leveraging attention mechanism in the feature fusion. AMFF includes self-enhanced attention module (SEAM) and cross-enhanced attention module (CEAM). SEAM is performed on a single feature map, which first adopts multiple dilation convolutions to enrich contextual information without compromising resolution and then utilizes the intra-layer attention on the current feature map. CEAM takes both the current feature map and the adjacent feature map as input to perform cross-layer attention. The adjacent feature map is modulated with the guidance of the current feature map, which is then combined with the current feature map and the output of SEAM for final prediction. AMFF is utilized in current feature fusion networks, e.g., FPN and PAFPN, and is further integrated into prevalent detectors to guide them to pay more attention to defects rather than the background. Extensive experiments are conducted on two real industrial datasets released by Tianchi platform, i.e., fabric and aluminum defect datasets. For each dataset, 500 images are randomly selected for test and the rest for training. The proposed AMFF is demonstrated to significantly boost defect detection accuracy with acceptable computational cost, and the real-time performance could fully satisfy practical requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英姑应助曲幻梅采纳,获得10
4秒前
炙热谷雪发布了新的文献求助10
5秒前
wangyb完成签到,获得积分10
29秒前
慕青应助科研通管家采纳,获得10
36秒前
36秒前
37秒前
54秒前
傅飞风发布了新的文献求助10
58秒前
星辰大海应助傅飞风采纳,获得50
1分钟前
1分钟前
1分钟前
34完成签到 ,获得积分10
1分钟前
1分钟前
jyy发布了新的文献求助200
1分钟前
奋斗完成签到 ,获得积分10
1分钟前
赘婿应助嘻嘻哈哈采纳,获得10
1分钟前
荔枝荔枝完成签到,获得积分10
2分钟前
tangxw完成签到,获得积分10
2分钟前
闪闪萤完成签到,获得积分10
2分钟前
随风完成签到 ,获得积分10
2分钟前
高晨旭完成签到 ,获得积分10
2分钟前
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
天边完成签到 ,获得积分10
2分钟前
Kevin完成签到,获得积分10
2分钟前
2分钟前
CX关闭了CX文献求助
2分钟前
3分钟前
CX关闭了CX文献求助
3分钟前
3分钟前
hahahah发布了新的文献求助10
3分钟前
AMENG完成签到,获得积分10
3分钟前
AMENG发布了新的文献求助10
3分钟前
无花果应助AMENG采纳,获得10
3分钟前
3分钟前
cdercder应助熊熊采纳,获得10
3分钟前
科研通AI5应助彩色傲柏采纳,获得10
3分钟前
华仔应助科研河马采纳,获得10
3分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736624
求助须知:如何正确求助?哪些是违规求助? 3280584
关于积分的说明 10020088
捐赠科研通 2997281
什么是DOI,文献DOI怎么找? 1644507
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749648