Maximizing performance and efficiency in 3D printing of polylactic acid biomaterials: Unveiling of microstructural morphology, and implications of process parameters and modeling of the mechanical strength, surface roughness, print time, and print energy for fused filament fabricated (FFF) bioparts

聚乳酸 极限抗拉强度 填充 抗弯强度 材料科学 表面粗糙度 熔丝制造 复合材料 3D打印 表面光洁度 复合数 结构工程 聚合物 工程类
作者
Ray Tahir Mushtaq,Li Wang,Chengwei Bao,Mudassar Rehman,Shubham Sharma,Aqib Mashood Khan,ElSayed M. Tag El-Din,Mohamed Abbas
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:259: 129201-129201 被引量:9
标识
DOI:10.1016/j.ijbiomac.2024.129201
摘要

Medical stents, artificial teeth, and grafts are just some of the many applications for additive manufacturing techniques like bio-degradable polylactic acid 3D printing. However, there are drawbacks associated with fused filament fabrication-fabricated objects, including poor surface quality, insufficient mechanical strength, and a lengthy construction time for even a relatively small object. Thus, this study aims to identify the finest polylactic acid 3D printing parameters to maximize print quality while minimizing energy use, print time, flexural and tensile strengths, average surface roughness, and print time, respectively. Specifically, the infill density, printing speed, and layer thickness are all variables that were selected. A full-central-composite design generated 20 samples to test the prediction models' experimental procedures. Validation trial tests were used to show that the experimental findings agreed with the predictions, and analysis of variance was used to verify the importance of the performance characteristics (ANOVA). At layer thickness = 0.26 mm, infill density = 84 %, and print speed = 68.87 mm/s, the following optimized values were measured for PLA: flexural strength = 70.1 MPa, tensile strength = 39.2 MPa, minimum surface roughness = 7.8 μm, print time = 47 min, and print energy = 0.18 kwh. Firms and clinicians may benefit from utilizing the developed, model to better predict the required surface characteristic for various aspects afore trials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助ws采纳,获得10
刚刚
qian03完成签到,获得积分10
刚刚
lijg71完成签到,获得积分10
刚刚
刚刚
天空的天发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
Lucas应助Reine采纳,获得10
2秒前
3秒前
3秒前
wanci应助嗷唔一口吃掉采纳,获得10
3秒前
Ccry发布了新的文献求助10
3秒前
威武的铭完成签到,获得积分10
3秒前
EeeYiz发布了新的文献求助10
3秒前
3秒前
4秒前
虚幻中蓝发布了新的文献求助10
4秒前
NexusExplorer应助愉快秀采纳,获得10
4秒前
4秒前
笑相发布了新的文献求助10
5秒前
Potato发布了新的文献求助10
5秒前
LAOA发布了新的文献求助10
5秒前
乐乐应助郝出站采纳,获得10
5秒前
5秒前
刻苦的煎蛋完成签到,获得积分10
5秒前
派大星完成签到,获得积分20
6秒前
情怀应助ccz采纳,获得10
6秒前
6秒前
7秒前
英俊的铭应助洋洋采纳,获得10
7秒前
念烟完成签到,获得积分10
7秒前
孙伟健发布了新的文献求助10
8秒前
QY发布了新的文献求助10
8秒前
奈落发布了新的文献求助10
8秒前
乐乐应助忧虑的孤萍采纳,获得10
8秒前
9秒前
9秒前
阿狸贱贱发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661078
求助须知:如何正确求助?哪些是违规求助? 4836965
关于积分的说明 15093547
捐赠科研通 4819770
什么是DOI,文献DOI怎么找? 2579579
邀请新用户注册赠送积分活动 1533880
关于科研通互助平台的介绍 1492628