作者
Ray Tahir Mushtaq,Li Wang,Chengwei Bao,Mudassar Rehman,Shubham Sharma,Aqib Mashood Khan,ElSayed M. Tag El-Din,Mohamed Abbas
摘要
Medical stents, artificial teeth, and grafts are just some of the many applications for additive manufacturing techniques like bio-degradable polylactic acid 3D printing. However, there are drawbacks associated with fused filament fabrication-fabricated objects, including poor surface quality, insufficient mechanical strength, and a lengthy construction time for even a relatively small object. Thus, this study aims to identify the finest polylactic acid 3D printing parameters to maximize print quality while minimizing energy use, print time, flexural and tensile strengths, average surface roughness, and print time, respectively. Specifically, the infill density, printing speed, and layer thickness are all variables that were selected. A full-central-composite design generated 20 samples to test the prediction models' experimental procedures. Validation trial tests were used to show that the experimental findings agreed with the predictions, and analysis of variance was used to verify the importance of the performance characteristics (ANOVA). At layer thickness = 0.26 mm, infill density = 84 %, and print speed = 68.87 mm/s, the following optimized values were measured for PLA: flexural strength = 70.1 MPa, tensile strength = 39.2 MPa, minimum surface roughness = 7.8 μm, print time = 47 min, and print energy = 0.18 kwh. Firms and clinicians may benefit from utilizing the developed, model to better predict the required surface characteristic for various aspects afore trials.