Three dimensional convolutional neural network-based automated detection of midline shift in traumatic brain injury cases from head computed tomography scans

医学 金标准(测试) 卷积神经网络 神经外科 中线偏移 计算机断层摄影术 头部受伤 放射科 急诊科 头部外伤 创伤性脑损伤 人工智能 医学物理学 外科 计算机科学 精神科
作者
Deepak Agrawal,Sharwari Joshi,Vaibhav Bahel,Latha Poonamallee,Amit Agrawal
出处
期刊:Journal of Neurosciences in Rural Practice [Georg Thieme Verlag KG]
卷期号:15: 293-299
标识
DOI:10.25259/jnrp_490_2023
摘要

Objectives: Midline shift (MLS) is a critical indicator of the severity of brain trauma and is even suggestive of changes in intracranial pressure. At present, radiologists have to manually measure the MLS using laborious techniques. Automatic detection of MLS using artificial intelligence can be a cutting-edge solution for emergency health-care personnel to help in prompt diagnosis and treatment. In this study, we sought to determine the accuracy and the prognostic value of our screening tool that automatically detects MLS on computed tomography (CT) images in patients with traumatic brain injuries (TBIs). Materials and Methods: The study enrolled TBI cases, who presented at the Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi. Institutional ethics committee permission was taken before starting the study. The data collection was carried out for over nine months, i.e., from January 2020 to September 2020. The data collection included head CT scans, patient demographics, clinical details as well as radiologist’s reports. The radiologist’s reports were considered the “gold standard” for evaluating the MLS. A deep learning-based three dimensional (3D) convolutional neural network (CNN) model was developed using 176 head CT scans. Results: The developed 3D CNN model was trained using 156 scans and was tested on 20 head CTs to determine the accuracy and sensitivity of the model. The screening tool was correctly able to detect 7/10 MLS cases and 4/10 non-MLS cases. The model showed an accuracy of 55% with high specificity (70%) and moderate sensitivity of 40%. Conclusion: An automated solution for screening the MLS can prove useful for neurosurgeons. The results are strong evidence that 3D CNN can assist clinicians in screening MLS cases in an emergency setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意的念柏完成签到,获得积分10
2秒前
八八九九九1完成签到,获得积分10
4秒前
5秒前
醒醒完成签到 ,获得积分10
6秒前
又壮了完成签到 ,获得积分10
8秒前
明理绝悟完成签到 ,获得积分10
8秒前
小昕思完成签到 ,获得积分10
17秒前
zhang完成签到 ,获得积分10
20秒前
CLTTTt完成签到,获得积分10
21秒前
77完成签到 ,获得积分10
25秒前
26秒前
Tang发布了新的文献求助10
31秒前
Dr_Fang完成签到,获得积分10
35秒前
lin123完成签到 ,获得积分10
39秒前
林好人完成签到 ,获得积分10
41秒前
qiaoxi完成签到,获得积分10
43秒前
rsdggsrser完成签到 ,获得积分10
47秒前
靓丽藏花完成签到 ,获得积分10
50秒前
YeMa完成签到,获得积分10
55秒前
shuwen完成签到 ,获得积分10
58秒前
WULAVIVA完成签到,获得积分10
1分钟前
仇敌克星完成签到,获得积分10
1分钟前
lemonkim完成签到,获得积分10
1分钟前
qaz111222完成签到 ,获得积分10
1分钟前
灰太狼大王完成签到 ,获得积分10
1分钟前
文静若血完成签到,获得积分10
1分钟前
秋风之墩完成签到,获得积分10
1分钟前
陈一完成签到,获得积分10
1分钟前
Tang发布了新的文献求助10
1分钟前
含光完成签到,获得积分10
1分钟前
紧张的幻桃完成签到,获得积分10
1分钟前
Sleven完成签到,获得积分10
1分钟前
美满的水卉完成签到,获得积分10
1分钟前
优雅的千雁完成签到,获得积分10
1分钟前
一个漂流瓶完成签到,获得积分10
1分钟前
xzy998应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
xzy998应助科研通管家采纳,获得10
1分钟前
xzy998应助科研通管家采纳,获得10
1分钟前
xzy998应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561730
求助须知:如何正确求助?哪些是违规求助? 4646763
关于积分的说明 14678983
捐赠科研通 4588208
什么是DOI,文献DOI怎么找? 2517396
邀请新用户注册赠送积分活动 1490657
关于科研通互助平台的介绍 1461765