亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Three dimensional convolutional neural network-based automated detection of midline shift in traumatic brain injury cases from head computed tomography scans

医学 金标准(测试) 卷积神经网络 神经外科 中线偏移 计算机断层摄影术 头部受伤 放射科 急诊科 头部外伤 创伤性脑损伤 人工智能 医学物理学 外科 计算机科学 精神科
作者
Deepak Agrawal,Sharwari Joshi,Vaibhav Bahel,Latha Poonamallee,Amit Agrawal
出处
期刊:Journal of Neurosciences in Rural Practice [Georg Thieme Verlag KG]
卷期号:15: 293-299
标识
DOI:10.25259/jnrp_490_2023
摘要

Objectives: Midline shift (MLS) is a critical indicator of the severity of brain trauma and is even suggestive of changes in intracranial pressure. At present, radiologists have to manually measure the MLS using laborious techniques. Automatic detection of MLS using artificial intelligence can be a cutting-edge solution for emergency health-care personnel to help in prompt diagnosis and treatment. In this study, we sought to determine the accuracy and the prognostic value of our screening tool that automatically detects MLS on computed tomography (CT) images in patients with traumatic brain injuries (TBIs). Materials and Methods: The study enrolled TBI cases, who presented at the Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi. Institutional ethics committee permission was taken before starting the study. The data collection was carried out for over nine months, i.e., from January 2020 to September 2020. The data collection included head CT scans, patient demographics, clinical details as well as radiologist’s reports. The radiologist’s reports were considered the “gold standard” for evaluating the MLS. A deep learning-based three dimensional (3D) convolutional neural network (CNN) model was developed using 176 head CT scans. Results: The developed 3D CNN model was trained using 156 scans and was tested on 20 head CTs to determine the accuracy and sensitivity of the model. The screening tool was correctly able to detect 7/10 MLS cases and 4/10 non-MLS cases. The model showed an accuracy of 55% with high specificity (70%) and moderate sensitivity of 40%. Conclusion: An automated solution for screening the MLS can prove useful for neurosurgeons. The results are strong evidence that 3D CNN can assist clinicians in screening MLS cases in an emergency setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
江枫渔火完成签到 ,获得积分10
3秒前
applepie发布了新的文献求助10
5秒前
麻薯发布了新的文献求助10
5秒前
顾矜应助黑翅鸢采纳,获得30
9秒前
14秒前
明鹄完成签到,获得积分10
14秒前
applepie完成签到,获得积分10
14秒前
21秒前
史九九发布了新的文献求助10
23秒前
顾矜应助大方元风采纳,获得10
24秒前
jingutaimi完成签到,获得积分10
28秒前
明鹄发布了新的文献求助10
28秒前
汉堡包应助puon采纳,获得10
29秒前
Rory完成签到 ,获得积分10
30秒前
balabala完成签到 ,获得积分10
31秒前
mmmmmmgm完成签到 ,获得积分10
32秒前
37秒前
科研通AI6应助史九九采纳,获得10
37秒前
肖玉娇完成签到,获得积分10
40秒前
黑翅鸢完成签到 ,获得积分10
42秒前
肖玉娇发布了新的文献求助10
43秒前
JamesPei应助cccan采纳,获得10
45秒前
ZXK完成签到 ,获得积分10
49秒前
Theresa发布了新的文献求助10
49秒前
55秒前
在水一方应助从容冰淇淋采纳,获得10
55秒前
1分钟前
浮游应助Jason采纳,获得10
1分钟前
计划完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
想上985完成签到,获得积分10
1分钟前
talent发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543077
求助须知:如何正确求助?哪些是违规求助? 4629202
关于积分的说明 14610993
捐赠科研通 4570495
什么是DOI,文献DOI怎么找? 2505794
邀请新用户注册赠送积分活动 1483074
关于科研通互助平台的介绍 1454374