Three dimensional convolutional neural network-based automated detection of midline shift in traumatic brain injury cases from head computed tomography scans

医学 金标准(测试) 卷积神经网络 神经外科 中线偏移 计算机断层摄影术 头部受伤 放射科 急诊科 头部外伤 创伤性脑损伤 人工智能 医学物理学 外科 计算机科学 精神科
作者
Deepak Agrawal,Sharwari Joshi,Vaibhav Bahel,Latha Poonamallee,Amit Agrawal
出处
期刊:Journal of Neurosciences in Rural Practice [Medknow]
卷期号:15: 293-299
标识
DOI:10.25259/jnrp_490_2023
摘要

Objectives: Midline shift (MLS) is a critical indicator of the severity of brain trauma and is even suggestive of changes in intracranial pressure. At present, radiologists have to manually measure the MLS using laborious techniques. Automatic detection of MLS using artificial intelligence can be a cutting-edge solution for emergency health-care personnel to help in prompt diagnosis and treatment. In this study, we sought to determine the accuracy and the prognostic value of our screening tool that automatically detects MLS on computed tomography (CT) images in patients with traumatic brain injuries (TBIs). Materials and Methods: The study enrolled TBI cases, who presented at the Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi. Institutional ethics committee permission was taken before starting the study. The data collection was carried out for over nine months, i.e., from January 2020 to September 2020. The data collection included head CT scans, patient demographics, clinical details as well as radiologist’s reports. The radiologist’s reports were considered the “gold standard” for evaluating the MLS. A deep learning-based three dimensional (3D) convolutional neural network (CNN) model was developed using 176 head CT scans. Results: The developed 3D CNN model was trained using 156 scans and was tested on 20 head CTs to determine the accuracy and sensitivity of the model. The screening tool was correctly able to detect 7/10 MLS cases and 4/10 non-MLS cases. The model showed an accuracy of 55% with high specificity (70%) and moderate sensitivity of 40%. Conclusion: An automated solution for screening the MLS can prove useful for neurosurgeons. The results are strong evidence that 3D CNN can assist clinicians in screening MLS cases in an emergency setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助瑶瑶瑶采纳,获得30
1秒前
share完成签到 ,获得积分10
1秒前
2秒前
2秒前
mariawang发布了新的文献求助10
2秒前
fouding完成签到,获得积分10
2秒前
even完成签到,获得积分10
5秒前
万能图书馆应助晨星采纳,获得10
5秒前
田様应助渣渣辉采纳,获得10
5秒前
情怀应助Ca采纳,获得10
6秒前
六五发布了新的文献求助10
7秒前
司空晓山发布了新的文献求助30
7秒前
准研究生发布了新的文献求助10
7秒前
Liuxinyan发布了新的文献求助10
8秒前
10秒前
狄百招完成签到,获得积分10
11秒前
科研通AI2S应助风清扬采纳,获得10
12秒前
光速蜗牛完成签到,获得积分10
12秒前
14秒前
zhangyu应助Gengar采纳,获得10
14秒前
shenwanggong完成签到,获得积分10
14秒前
14秒前
共享精神应助www采纳,获得10
15秒前
南极的企鹅365完成签到 ,获得积分10
15秒前
北风发布了新的文献求助10
15秒前
16秒前
Rondab应助123采纳,获得30
17秒前
lucky发布了新的文献求助10
18秒前
萧七七发布了新的文献求助10
18秒前
18秒前
yukriyy发布了新的文献求助10
19秒前
19秒前
20秒前
DRHOUSE完成签到,获得积分10
21秒前
pluto发布了新的文献求助10
21秒前
炖地瓜完成签到 ,获得积分10
21秒前
DavidXie完成签到,获得积分20
21秒前
22秒前
涨秋池发布了新的文献求助10
22秒前
过丫丫完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998480
求助须知:如何正确求助?哪些是违规求助? 3537993
关于积分的说明 11273002
捐赠科研通 3276991
什么是DOI,文献DOI怎么找? 1807228
邀请新用户注册赠送积分活动 883823
科研通“疑难数据库(出版商)”最低求助积分说明 810049