Three dimensional convolutional neural network-based automated detection of midline shift in traumatic brain injury cases from head computed tomography scans

医学 金标准(测试) 卷积神经网络 神经外科 中线偏移 计算机断层摄影术 头部受伤 放射科 急诊科 头部外伤 创伤性脑损伤 人工智能 医学物理学 外科 计算机科学 精神科
作者
Deepak Agrawal,Sharwari Joshi,Vaibhav Bahel,Latha Poonamallee,Amit Agrawal
出处
期刊:Journal of Neurosciences in Rural Practice [Medknow]
卷期号:15: 293-299
标识
DOI:10.25259/jnrp_490_2023
摘要

Objectives: Midline shift (MLS) is a critical indicator of the severity of brain trauma and is even suggestive of changes in intracranial pressure. At present, radiologists have to manually measure the MLS using laborious techniques. Automatic detection of MLS using artificial intelligence can be a cutting-edge solution for emergency health-care personnel to help in prompt diagnosis and treatment. In this study, we sought to determine the accuracy and the prognostic value of our screening tool that automatically detects MLS on computed tomography (CT) images in patients with traumatic brain injuries (TBIs). Materials and Methods: The study enrolled TBI cases, who presented at the Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi. Institutional ethics committee permission was taken before starting the study. The data collection was carried out for over nine months, i.e., from January 2020 to September 2020. The data collection included head CT scans, patient demographics, clinical details as well as radiologist’s reports. The radiologist’s reports were considered the “gold standard” for evaluating the MLS. A deep learning-based three dimensional (3D) convolutional neural network (CNN) model was developed using 176 head CT scans. Results: The developed 3D CNN model was trained using 156 scans and was tested on 20 head CTs to determine the accuracy and sensitivity of the model. The screening tool was correctly able to detect 7/10 MLS cases and 4/10 non-MLS cases. The model showed an accuracy of 55% with high specificity (70%) and moderate sensitivity of 40%. Conclusion: An automated solution for screening the MLS can prove useful for neurosurgeons. The results are strong evidence that 3D CNN can assist clinicians in screening MLS cases in an emergency setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mency0101完成签到,获得积分10
1秒前
2秒前
2秒前
搜集达人应助callmecarlos采纳,获得10
2秒前
平淡白昼发布了新的文献求助10
2秒前
抹茶芝士酸奶完成签到,获得积分10
2秒前
阿良发布了新的文献求助10
2秒前
zsw完成签到,获得积分10
3秒前
传奇3应助娟娟采纳,获得10
3秒前
blue完成签到,获得积分10
3秒前
3秒前
4秒前
科目三应助泡芙采纳,获得10
4秒前
sje发布了新的文献求助10
5秒前
失眠的桐发布了新的文献求助10
5秒前
清爽的向秋完成签到 ,获得积分10
5秒前
大蒜味酸奶钊完成签到 ,获得积分10
6秒前
Linxiu发布了新的文献求助10
6秒前
zmf完成签到,获得积分10
7秒前
pangpang完成签到,获得积分10
7秒前
8秒前
郑祺祺发布了新的文献求助10
8秒前
9秒前
赵鑫雅完成签到,获得积分20
9秒前
顾矜应助zfl采纳,获得10
10秒前
刘艳林完成签到,获得积分10
10秒前
HFBB完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
活泼的惜儿完成签到 ,获得积分10
10秒前
心碎的黄焖鸡完成签到 ,获得积分10
11秒前
平淡白昼完成签到,获得积分10
11秒前
12秒前
小幸运完成签到,获得积分10
12秒前
新手菜鸟发布了新的文献求助10
13秒前
万能图书馆应助whl采纳,获得10
13秒前
Sylvie发布了新的文献求助10
13秒前
科研通AI6应助csl采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251748
求助须知:如何正确求助?哪些是违规求助? 4415796
关于积分的说明 13747415
捐赠科研通 4287606
什么是DOI,文献DOI怎么找? 2352502
邀请新用户注册赠送积分活动 1349331
关于科研通互助平台的介绍 1308812