亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Three dimensional convolutional neural network-based automated detection of midline shift in traumatic brain injury cases from head computed tomography scans

医学 金标准(测试) 卷积神经网络 神经外科 中线偏移 计算机断层摄影术 头部受伤 放射科 急诊科 头部外伤 创伤性脑损伤 人工智能 医学物理学 外科 计算机科学 精神科
作者
Deepak Agrawal,Sharwari Joshi,Vaibhav Bahel,Latha Poonamallee,Amit Agrawal
出处
期刊:Journal of Neurosciences in Rural Practice [Georg Thieme Verlag KG]
卷期号:15: 293-299
标识
DOI:10.25259/jnrp_490_2023
摘要

Objectives: Midline shift (MLS) is a critical indicator of the severity of brain trauma and is even suggestive of changes in intracranial pressure. At present, radiologists have to manually measure the MLS using laborious techniques. Automatic detection of MLS using artificial intelligence can be a cutting-edge solution for emergency health-care personnel to help in prompt diagnosis and treatment. In this study, we sought to determine the accuracy and the prognostic value of our screening tool that automatically detects MLS on computed tomography (CT) images in patients with traumatic brain injuries (TBIs). Materials and Methods: The study enrolled TBI cases, who presented at the Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi. Institutional ethics committee permission was taken before starting the study. The data collection was carried out for over nine months, i.e., from January 2020 to September 2020. The data collection included head CT scans, patient demographics, clinical details as well as radiologist’s reports. The radiologist’s reports were considered the “gold standard” for evaluating the MLS. A deep learning-based three dimensional (3D) convolutional neural network (CNN) model was developed using 176 head CT scans. Results: The developed 3D CNN model was trained using 156 scans and was tested on 20 head CTs to determine the accuracy and sensitivity of the model. The screening tool was correctly able to detect 7/10 MLS cases and 4/10 non-MLS cases. The model showed an accuracy of 55% with high specificity (70%) and moderate sensitivity of 40%. Conclusion: An automated solution for screening the MLS can prove useful for neurosurgeons. The results are strong evidence that 3D CNN can assist clinicians in screening MLS cases in an emergency setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林夕完成签到 ,获得积分10
1秒前
1秒前
懒癌晚期完成签到,获得积分10
8秒前
选波发布了新的文献求助10
8秒前
寻道图强应助清爽的以晴采纳,获得60
20秒前
ding应助选波采纳,获得10
25秒前
25秒前
陳.发布了新的文献求助10
31秒前
情怀应助陳.采纳,获得10
35秒前
小马甲应助陳.采纳,获得10
35秒前
FashionBoy应助陳.采纳,获得10
35秒前
田様应助陳.采纳,获得10
35秒前
张皓关注了科研通微信公众号
41秒前
科研通AI6应助大气的山彤采纳,获得30
43秒前
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
情怀应助科研通管家采纳,获得30
1分钟前
lgy发布了新的文献求助30
1分钟前
dawnfrf应助半城烟火采纳,获得30
1分钟前
spy完成签到,获得积分10
1分钟前
1分钟前
小小应助司空天德采纳,获得10
2分钟前
感动的醉波完成签到,获得积分10
2分钟前
852应助lgy采纳,获得20
2分钟前
tubby发布了新的文献求助10
2分钟前
在水一方应助tubby采纳,获得10
2分钟前
sy发布了新的文献求助20
2分钟前
2分钟前
2分钟前
2分钟前
sy发布了新的文献求助10
2分钟前
充电宝应助sy采纳,获得10
2分钟前
2分钟前
选波发布了新的文献求助10
3分钟前
彭于晏应助积极的初南采纳,获得10
3分钟前
顾矜应助积极的初南采纳,获得10
3分钟前
ptang发布了新的文献求助10
3分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644657
求助须知:如何正确求助?哪些是违规求助? 4764996
关于积分的说明 15025471
捐赠科研通 4803014
什么是DOI,文献DOI怎么找? 2567837
邀请新用户注册赠送积分活动 1525425
关于科研通互助平台的介绍 1484958