Three dimensional convolutional neural network-based automated detection of midline shift in traumatic brain injury cases from head computed tomography scans

医学 金标准(测试) 卷积神经网络 神经外科 中线偏移 计算机断层摄影术 头部受伤 放射科 急诊科 头部外伤 创伤性脑损伤 人工智能 医学物理学 外科 计算机科学 精神科
作者
Deepak Agrawal,Sharwari Joshi,Vaibhav Bahel,Latha Poonamallee,Amit Agrawal
出处
期刊:Journal of Neurosciences in Rural Practice [Georg Thieme Verlag KG]
卷期号:15: 293-299
标识
DOI:10.25259/jnrp_490_2023
摘要

Objectives: Midline shift (MLS) is a critical indicator of the severity of brain trauma and is even suggestive of changes in intracranial pressure. At present, radiologists have to manually measure the MLS using laborious techniques. Automatic detection of MLS using artificial intelligence can be a cutting-edge solution for emergency health-care personnel to help in prompt diagnosis and treatment. In this study, we sought to determine the accuracy and the prognostic value of our screening tool that automatically detects MLS on computed tomography (CT) images in patients with traumatic brain injuries (TBIs). Materials and Methods: The study enrolled TBI cases, who presented at the Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi. Institutional ethics committee permission was taken before starting the study. The data collection was carried out for over nine months, i.e., from January 2020 to September 2020. The data collection included head CT scans, patient demographics, clinical details as well as radiologist’s reports. The radiologist’s reports were considered the “gold standard” for evaluating the MLS. A deep learning-based three dimensional (3D) convolutional neural network (CNN) model was developed using 176 head CT scans. Results: The developed 3D CNN model was trained using 156 scans and was tested on 20 head CTs to determine the accuracy and sensitivity of the model. The screening tool was correctly able to detect 7/10 MLS cases and 4/10 non-MLS cases. The model showed an accuracy of 55% with high specificity (70%) and moderate sensitivity of 40%. Conclusion: An automated solution for screening the MLS can prove useful for neurosurgeons. The results are strong evidence that 3D CNN can assist clinicians in screening MLS cases in an emergency setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
嗯嗯应助王之争霸采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
海南发布了新的文献求助10
3秒前
晨晨发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
缓慢尔岚发布了新的文献求助10
5秒前
善良随阴完成签到,获得积分10
5秒前
5秒前
5秒前
奶白的雪子完成签到,获得积分10
5秒前
星辰大海应助阿依咕噜采纳,获得10
7秒前
香蕉觅云应助DG采纳,获得10
7秒前
睡觉了完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
Y_Y完成签到,获得积分10
8秒前
zorro3574发布了新的文献求助10
8秒前
8秒前
8秒前
嘿嘿完成签到,获得积分10
9秒前
renxin发布了新的文献求助10
9秒前
10秒前
11秒前
内向孤菱发布了新的文献求助30
11秒前
11秒前
可可布朗尼完成签到,获得积分10
12秒前
思源应助自信笑槐采纳,获得10
13秒前
14秒前
斑比发布了新的文献求助10
15秒前
JUN发布了新的文献求助10
15秒前
16秒前
bkagyin应助澄桦采纳,获得10
16秒前
天真似狮发布了新的文献求助10
18秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131