An Integrated Clinical and Computerized Tomography-Based Radiomic Feature Model to Separate Benign from Malignant Pleural Effusion

医学 接收机工作特性 逻辑回归 判别式 人工智能 放射科 回顾性队列研究 随机森林 胸腔积液 队列 机器学习 曲线下面积 核医学 病理 内科学 计算机科学
作者
Fangqi Cai,Liwei Cheng,Xiaoling Liao,Yuping Xie,Wu Wang,Haofeng Zhang,Jinhua Lu,Ru Chen,Chunxia Chen,Xing Zhou,Xiaoyun Mo,Guoping Hu,Luying Huang
出处
期刊:Respiration [Karger Publishers]
卷期号:103 (7): 406-416 被引量:3
标识
DOI:10.1159/000536517
摘要

<b><i>Introduction:</i></b> Distinguishing between malignant pleural effusion (MPE) and benign pleural effusion (BPE) poses a challenge in clinical practice. We aimed to construct and validate a combined model integrating radiomic features and clinical factors using computerized tomography (CT) images to differentiate between MPE and BPE. <b><i>Methods:</i></b> A retrospective inclusion of 315 patients with pleural effusion (PE) was conducted in this study (training cohort: <i>n</i> = 220; test cohort: <i>n</i> = 95). Radiomic features were extracted from CT images, and the dimensionality reduction and selection processes were carried out to obtain the optimal radiomic features. Logistic regression (LR), support vector machine (SVM), and random forest were employed to construct radiomic models. LR analyses were utilized to identify independent clinical risk factors to develop a clinical model. The combined model was created by integrating the optimal radiomic features with the independent clinical predictive factors. The discriminative ability of each model was assessed by receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA). <b><i>Results:</i></b> Out of the total 1,834 radiomic features extracted, 15 optimal radiomic features explicitly related to MPE were picked to develop the radiomic model. Among the radiomic models, the SVM model demonstrated the highest predictive performance [area under the curve (AUC), training cohort: 0.876, test cohort: 0.774]. Six clinically independent predictive factors, including age, effusion laterality, procalcitonin, carcinoembryonic antigen, carbohydrate antigen 125 (CA125), and neuron-specific enolase (NSE), were selected for constructing the clinical model. The combined model (AUC: 0.932, 0.870) exhibited superior discriminative performance in the training and test cohorts compared to the clinical model (AUC: 0.850, 0.820) and the radiomic model (AUC: 0.876, 0.774). The calibration curves and DCA further confirmed the practicality of the combined model. <b><i>Conclusion:</i></b> This study presented the development and validation of a combined model for distinguishing MPE and BPE. The combined model was a powerful tool for assisting in the clinical diagnosis of PE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DentistRui完成签到,获得积分10
1秒前
1秒前
yrll发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
遇晴发布了新的文献求助10
3秒前
4秒前
流水自无声完成签到,获得积分10
5秒前
kd1412完成签到 ,获得积分10
5秒前
7秒前
小二郎应助霓娜酱采纳,获得10
7秒前
负责友易发布了新的文献求助10
7秒前
刘欣怡发布了新的文献求助10
7秒前
津津乐道完成签到,获得积分10
8秒前
蒲云海发布了新的文献求助10
8秒前
酷波er应助哈哈哈哈采纳,获得10
8秒前
liuzhanyu发布了新的文献求助10
9秒前
9秒前
lily完成签到 ,获得积分10
10秒前
11秒前
爱喝酒的酒葫芦完成签到,获得积分10
11秒前
CodeCraft应助遇晴采纳,获得10
11秒前
Jiangzhibing发布了新的文献求助20
12秒前
schuang完成签到,获得积分10
13秒前
14秒前
Sssssss完成签到 ,获得积分10
15秒前
15秒前
hzwyyds应助大象放冰箱采纳,获得10
16秒前
16秒前
梁贵年发布了新的文献求助10
17秒前
脑洞疼应助辇道增七采纳,获得10
18秒前
悲凉的强炫完成签到,获得积分10
18秒前
善学以致用应助1241343948采纳,获得10
18秒前
彭于晏应助labxgr采纳,获得10
19秒前
20秒前
tian发布了新的文献求助10
20秒前
21秒前
东风徐来发布了新的文献求助50
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993