清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Integrated Clinical and Computerized Tomography-Based Radiomic Feature Model to Separate Benign from Malignant Pleural Effusion

医学 接收机工作特性 无线电技术 逻辑回归 判别式 人工智能 放射科 回顾性队列研究 胸腔积液 队列 机器学习 病理 内科学 计算机科学
作者
Fangqi Cai,Liwei Cheng,Xiaoling Liao,Yuping Xie,Yan Wang,Haofeng Zhang,Jinhua Lu,Ru Chen,Chunxia Chen,Xing Zhou,Xiaoyun Mo,Guoping Hu,Luying Huang
出处
期刊:Respiration [S. Karger AG]
卷期号:: 1-11 被引量:1
标识
DOI:10.1159/000536517
摘要

<b><i>Introduction:</i></b> Distinguishing between malignant pleural effusion (MPE) and benign pleural effusion (BPE) poses a challenge in clinical practice. We aimed to construct and validate a combined model integrating radiomic features and clinical factors using computerized tomography (CT) images to differentiate between MPE and BPE. <b><i>Methods:</i></b> A retrospective inclusion of 315 patients with pleural effusion (PE) was conducted in this study (training cohort: <i>n</i> = 220; test cohort: <i>n</i> = 95). Radiomic features were extracted from CT images, and the dimensionality reduction and selection processes were carried out to obtain the optimal radiomic features. Logistic regression (LR), support vector machine (SVM), and random forest were employed to construct radiomic models. LR analyses were utilized to identify independent clinical risk factors to develop a clinical model. The combined model was created by integrating the optimal radiomic features with the independent clinical predictive factors. The discriminative ability of each model was assessed by receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA). <b><i>Results:</i></b> Out of the total 1,834 radiomic features extracted, 15 optimal radiomic features explicitly related to MPE were picked to develop the radiomic model. Among the radiomic models, the SVM model demonstrated the highest predictive performance [area under the curve (AUC), training cohort: 0.876, test cohort: 0.774]. Six clinically independent predictive factors, including age, effusion laterality, procalcitonin, carcinoembryonic antigen, carbohydrate antigen 125 (CA125), and neuron-specific enolase (NSE), were selected for constructing the clinical model. The combined model (AUC: 0.932, 0.870) exhibited superior discriminative performance in the training and test cohorts compared to the clinical model (AUC: 0.850, 0.820) and the radiomic model (AUC: 0.876, 0.774). The calibration curves and DCA further confirmed the practicality of the combined model. <b><i>Conclusion:</i></b> This study presented the development and validation of a combined model for distinguishing MPE and BPE. The combined model was a powerful tool for assisting in the clinical diagnosis of PE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸的白梦完成签到 ,获得积分10
1秒前
栾小鱼完成签到,获得积分10
7秒前
Olivia完成签到 ,获得积分10
15秒前
嘿嘿完成签到 ,获得积分10
25秒前
zeannezg完成签到 ,获得积分10
33秒前
俊俊完成签到 ,获得积分0
35秒前
2024kyt完成签到 ,获得积分10
49秒前
58秒前
司马绮山完成签到,获得积分10
1分钟前
张小汉发布了新的文献求助10
1分钟前
张peter完成签到 ,获得积分10
1分钟前
1分钟前
liu95完成签到 ,获得积分10
1分钟前
摘星012完成签到 ,获得积分10
1分钟前
xianyaoz完成签到 ,获得积分10
1分钟前
NN完成签到,获得积分10
1分钟前
张小汉发布了新的文献求助10
1分钟前
1分钟前
无悔完成签到 ,获得积分10
1分钟前
张小汉完成签到,获得积分10
1分钟前
mito完成签到,获得积分10
1分钟前
莎莎完成签到 ,获得积分10
1分钟前
elisa828完成签到,获得积分10
1分钟前
Dr.Zhang应助科研通管家采纳,获得30
1分钟前
spark810应助科研通管家采纳,获得30
1分钟前
spark810应助科研通管家采纳,获得30
1分钟前
Singularity应助科研通管家采纳,获得20
1分钟前
康复小白完成签到 ,获得积分10
1分钟前
yueLu完成签到 ,获得积分10
2分钟前
橘子海完成签到 ,获得积分10
2分钟前
小小果妈完成签到 ,获得积分10
2分钟前
skp发布了新的文献求助10
2分钟前
无辜的行云完成签到 ,获得积分0
2分钟前
2分钟前
宇文雨文完成签到 ,获得积分10
2分钟前
今后应助mm_zxh采纳,获得10
3分钟前
小伊001完成签到,获得积分10
3分钟前
3分钟前
尔信完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081598
求助须知:如何正确求助?哪些是违规求助? 2734439
关于积分的说明 7532820
捐赠科研通 2383917
什么是DOI,文献DOI怎么找? 1264125
科研通“疑难数据库(出版商)”最低求助积分说明 612563
版权声明 597578