An Integrated Clinical and Computerized Tomography-Based Radiomic Feature Model to Separate Benign from Malignant Pleural Effusion

医学 接收机工作特性 无线电技术 逻辑回归 判别式 恶性胸腔积液 人工智能 放射科 回顾性队列研究 特征选择 随机森林 胸腔积液 决策树 机器学习 曲线下面积 癌胚抗原 特征(语言学) 支持向量机 诊断准确性 Lasso(编程语言) 降维 肺癌 医学诊断 模式识别(心理学) 渗出 医学影像学 鉴别诊断 试验预测值
作者
Fangqi Cai,Liwei Cheng,Xiaoling Liao,Yuping Xie,Wu Wang,Haofeng Zhang,Jinhua Lu,Ru Chen,Chunxia Chen,Xing Zhou,Xiaoyun Mo,Guoping Hu,Luying Huang
出处
期刊:Respiration [Karger Publishers]
卷期号:103 (7): 406-416 被引量:3
标识
DOI:10.1159/000536517
摘要

<b><i>Introduction:</i></b> Distinguishing between malignant pleural effusion (MPE) and benign pleural effusion (BPE) poses a challenge in clinical practice. We aimed to construct and validate a combined model integrating radiomic features and clinical factors using computerized tomography (CT) images to differentiate between MPE and BPE. <b><i>Methods:</i></b> A retrospective inclusion of 315 patients with pleural effusion (PE) was conducted in this study (training cohort: <i>n</i> = 220; test cohort: <i>n</i> = 95). Radiomic features were extracted from CT images, and the dimensionality reduction and selection processes were carried out to obtain the optimal radiomic features. Logistic regression (LR), support vector machine (SVM), and random forest were employed to construct radiomic models. LR analyses were utilized to identify independent clinical risk factors to develop a clinical model. The combined model was created by integrating the optimal radiomic features with the independent clinical predictive factors. The discriminative ability of each model was assessed by receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA). <b><i>Results:</i></b> Out of the total 1,834 radiomic features extracted, 15 optimal radiomic features explicitly related to MPE were picked to develop the radiomic model. Among the radiomic models, the SVM model demonstrated the highest predictive performance [area under the curve (AUC), training cohort: 0.876, test cohort: 0.774]. Six clinically independent predictive factors, including age, effusion laterality, procalcitonin, carcinoembryonic antigen, carbohydrate antigen 125 (CA125), and neuron-specific enolase (NSE), were selected for constructing the clinical model. The combined model (AUC: 0.932, 0.870) exhibited superior discriminative performance in the training and test cohorts compared to the clinical model (AUC: 0.850, 0.820) and the radiomic model (AUC: 0.876, 0.774). The calibration curves and DCA further confirmed the practicality of the combined model. <b><i>Conclusion:</i></b> This study presented the development and validation of a combined model for distinguishing MPE and BPE. The combined model was a powerful tool for assisting in the clinical diagnosis of PE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyan完成签到,获得积分10
1秒前
ABC完成签到,获得积分10
1秒前
鑫鑫完成签到,获得积分10
2秒前
银色星辰完成签到,获得积分10
3秒前
ven完成签到,获得积分10
3秒前
XU2025完成签到 ,获得积分10
4秒前
张玥完成签到,获得积分10
7秒前
西瓜刀完成签到 ,获得积分10
7秒前
FD完成签到,获得积分10
8秒前
qyys完成签到 ,获得积分10
8秒前
科研老兵完成签到,获得积分10
9秒前
ppttyy完成签到 ,获得积分10
9秒前
开朗的乐蕊完成签到,获得积分10
11秒前
wjj119完成签到,获得积分10
11秒前
脑洞疼应助欣喜灵波采纳,获得10
11秒前
赖雅绿完成签到,获得积分10
18秒前
胡图图完成签到,获得积分0
19秒前
鲤鱼完成签到,获得积分10
21秒前
23秒前
24秒前
霍巧凡发布了新的文献求助10
24秒前
红糖小糍粑应助风清扬采纳,获得10
25秒前
Ammon完成签到,获得积分10
25秒前
毛毛完成签到,获得积分10
26秒前
27秒前
POTATO发布了新的文献求助10
27秒前
ho应助GUO采纳,获得10
28秒前
开心向真完成签到,获得积分10
28秒前
xg发布了新的文献求助10
29秒前
康米完成签到,获得积分10
29秒前
木子大少发布了新的文献求助10
30秒前
向上发布了新的文献求助10
32秒前
唯梦完成签到 ,获得积分10
33秒前
niuniu完成签到,获得积分10
33秒前
豆包完成签到,获得积分10
36秒前
小野狼完成签到,获得积分10
37秒前
AKYDXS完成签到,获得积分10
37秒前
沉心望星海完成签到,获得积分10
37秒前
小二郎应助向上采纳,获得10
37秒前
千俞完成签到 ,获得积分10
38秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212724
求助须知:如何正确求助?哪些是违规求助? 4388755
关于积分的说明 13664611
捐赠科研通 4249384
什么是DOI,文献DOI怎么找? 2331550
邀请新用户注册赠送积分活动 1329282
关于科研通互助平台的介绍 1282695