医学
接收机工作特性
无线电技术
逻辑回归
判别式
人工智能
放射科
回顾性队列研究
胸腔积液
队列
机器学习
病理
内科学
计算机科学
作者
Fangqi Cai,Liwei Cheng,Xiaoling Liao,Yuping Xie,Yan Wang,Haofeng Zhang,Jinhua Lu,Ru Chen,Chunxia Chen,Xing Zhou,Xiaoyun Mo,Guoping Hu,Luying Huang
出处
期刊:Respiration
[S. Karger AG]
日期:2024-01-01
卷期号:: 1-11
被引量:1
摘要
<b><i>Introduction:</i></b> Distinguishing between malignant pleural effusion (MPE) and benign pleural effusion (BPE) poses a challenge in clinical practice. We aimed to construct and validate a combined model integrating radiomic features and clinical factors using computerized tomography (CT) images to differentiate between MPE and BPE. <b><i>Methods:</i></b> A retrospective inclusion of 315 patients with pleural effusion (PE) was conducted in this study (training cohort: <i>n</i> = 220; test cohort: <i>n</i> = 95). Radiomic features were extracted from CT images, and the dimensionality reduction and selection processes were carried out to obtain the optimal radiomic features. Logistic regression (LR), support vector machine (SVM), and random forest were employed to construct radiomic models. LR analyses were utilized to identify independent clinical risk factors to develop a clinical model. The combined model was created by integrating the optimal radiomic features with the independent clinical predictive factors. The discriminative ability of each model was assessed by receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA). <b><i>Results:</i></b> Out of the total 1,834 radiomic features extracted, 15 optimal radiomic features explicitly related to MPE were picked to develop the radiomic model. Among the radiomic models, the SVM model demonstrated the highest predictive performance [area under the curve (AUC), training cohort: 0.876, test cohort: 0.774]. Six clinically independent predictive factors, including age, effusion laterality, procalcitonin, carcinoembryonic antigen, carbohydrate antigen 125 (CA125), and neuron-specific enolase (NSE), were selected for constructing the clinical model. The combined model (AUC: 0.932, 0.870) exhibited superior discriminative performance in the training and test cohorts compared to the clinical model (AUC: 0.850, 0.820) and the radiomic model (AUC: 0.876, 0.774). The calibration curves and DCA further confirmed the practicality of the combined model. <b><i>Conclusion:</i></b> This study presented the development and validation of a combined model for distinguishing MPE and BPE. The combined model was a powerful tool for assisting in the clinical diagnosis of PE patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI