An Integrated Clinical and Computerized Tomography-Based Radiomic Feature Model to Separate Benign from Malignant Pleural Effusion

医学 接收机工作特性 无线电技术 逻辑回归 判别式 人工智能 放射科 回顾性队列研究 胸腔积液 队列 机器学习 病理 内科学 计算机科学
作者
Fangqi Cai,Liwei Cheng,Xiaoling Liao,Yuping Xie,Yan Wang,Haofeng Zhang,Jinhua Lu,Ru Chen,Chunxia Chen,Xing Zhou,Xiaoyun Mo,Guoping Hu,Luying Huang
出处
期刊:Respiration [S. Karger AG]
卷期号:: 1-11 被引量:1
标识
DOI:10.1159/000536517
摘要

<b><i>Introduction:</i></b> Distinguishing between malignant pleural effusion (MPE) and benign pleural effusion (BPE) poses a challenge in clinical practice. We aimed to construct and validate a combined model integrating radiomic features and clinical factors using computerized tomography (CT) images to differentiate between MPE and BPE. <b><i>Methods:</i></b> A retrospective inclusion of 315 patients with pleural effusion (PE) was conducted in this study (training cohort: <i>n</i> = 220; test cohort: <i>n</i> = 95). Radiomic features were extracted from CT images, and the dimensionality reduction and selection processes were carried out to obtain the optimal radiomic features. Logistic regression (LR), support vector machine (SVM), and random forest were employed to construct radiomic models. LR analyses were utilized to identify independent clinical risk factors to develop a clinical model. The combined model was created by integrating the optimal radiomic features with the independent clinical predictive factors. The discriminative ability of each model was assessed by receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA). <b><i>Results:</i></b> Out of the total 1,834 radiomic features extracted, 15 optimal radiomic features explicitly related to MPE were picked to develop the radiomic model. Among the radiomic models, the SVM model demonstrated the highest predictive performance [area under the curve (AUC), training cohort: 0.876, test cohort: 0.774]. Six clinically independent predictive factors, including age, effusion laterality, procalcitonin, carcinoembryonic antigen, carbohydrate antigen 125 (CA125), and neuron-specific enolase (NSE), were selected for constructing the clinical model. The combined model (AUC: 0.932, 0.870) exhibited superior discriminative performance in the training and test cohorts compared to the clinical model (AUC: 0.850, 0.820) and the radiomic model (AUC: 0.876, 0.774). The calibration curves and DCA further confirmed the practicality of the combined model. <b><i>Conclusion:</i></b> This study presented the development and validation of a combined model for distinguishing MPE and BPE. The combined model was a powerful tool for assisting in the clinical diagnosis of PE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
爆米花应助Damia采纳,获得10
1秒前
和尘同光发布了新的文献求助30
2秒前
lzcnextdoor发布了新的文献求助10
2秒前
3秒前
FashionBoy应助Autken采纳,获得10
3秒前
优秀的芯发布了新的文献求助10
3秒前
上官若男应助ai化学采纳,获得10
3秒前
田様应助一念初见采纳,获得10
3秒前
爆米花应助独特的沛凝采纳,获得30
4秒前
4秒前
bruce233发布了新的文献求助10
4秒前
5秒前
BB完成签到,获得积分10
6秒前
lzcnextdoor完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
一定会顺利完成签到 ,获得积分10
8秒前
华仔应助ayu采纳,获得10
9秒前
嘻嘻子发布了新的文献求助10
9秒前
10秒前
10秒前
HMZ完成签到,获得积分10
10秒前
元水云发布了新的文献求助10
10秒前
柒月完成签到,获得积分10
10秒前
11秒前
隐形曼青应助和尘同光采纳,获得30
11秒前
曲奇饼干应助小李爱吃梨采纳,获得10
11秒前
123发布了新的文献求助10
12秒前
zeng发布了新的文献求助10
12秒前
幸福糖豆完成签到,获得积分10
13秒前
优秀的芯完成签到,获得积分10
14秒前
bruce233完成签到,获得积分10
14秒前
清爽灰狼发布了新的文献求助10
15秒前
科目三应助小feng采纳,获得10
16秒前
16秒前
乐乐应助机智的书竹采纳,获得10
18秒前
充电宝应助Fancy采纳,获得10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150106
求助须知:如何正确求助?哪些是违规求助? 2801196
关于积分的说明 7843534
捐赠科研通 2458660
什么是DOI,文献DOI怎么找? 1308585
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721