A novel metric-based model with the ability of zero-shot learning for intelligent fault diagnosis

计算机科学 Softmax函数 断层(地质) 公制(单位) 人工智能 小波 平滑的 模式识别(心理学) 卷积神经网络 数据挖掘 实时计算 计算机视觉 运营管理 地质学 经济 地震学
作者
Caizi Fan,Yongchao Zhang,Hui Ma,Zeyu Ma,Kun Yu,Songtao Zhao,Xiaoxu Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:129: 107605-107605 被引量:10
标识
DOI:10.1016/j.engappai.2023.107605
摘要

Intelligent fault diagnosis plays an important role in maintaining the safe and reliable operation of rotating machinery. However, the data collected in real engineering scenarios may be severely insufficient, which presents challenges to the intelligent fault diagnosis methods. To address this problem, this paper introduces a metric-based meta learning approach for gear fault diagnosis under zero shot conditions. Firstly, a gear-rotor dynamics model is established to simulate the vibration signals under different fault conditions. And the signals are converted into energy maps through wavelet transformation to provide frequency domain fault features. Secondly, a deep convolutional network is employed as the feature extraction module to construct the prototype representations by calculating the average embedding within each fault class. Then, the distances between the actual signals collected from the gear test rig and the class prototypes are computed. Finally, the softmax is applied to convert these distances into probability distributions for outputting the predicted fault classes. Furthermore, label smoothing technology is introduced to mitigate the probability distribution differences between simulated signals and real signals. The experimental results demonstrate that the average diagnostic accuracy of the proposed model reaches 98.9%, which is better than other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yud完成签到 ,获得积分10
刚刚
1秒前
拼搏思卉发布了新的文献求助10
1秒前
2秒前
雨碎寒江完成签到,获得积分10
2秒前
3秒前
会飞的木头完成签到,获得积分10
3秒前
雪白涵山发布了新的文献求助20
3秒前
shouyu29应助MADKAI采纳,获得10
3秒前
Seiswan发布了新的文献求助10
3秒前
小小菜鸟完成签到,获得积分10
4秒前
4秒前
西西弗斯完成签到,获得积分10
4秒前
KT2440完成签到,获得积分10
5秒前
顾阿秀发布了新的文献求助10
5秒前
5秒前
5秒前
gnr2000完成签到,获得积分0
5秒前
6秒前
6秒前
BareBear应助赖道之采纳,获得10
6秒前
LEMON完成签到,获得积分10
6秒前
Ava应助buuyoo采纳,获得10
7秒前
情怀应助liuwei采纳,获得10
7秒前
aaefv完成签到,获得积分10
7秒前
小小菜鸟发布了新的文献求助10
7秒前
深情安青应助123采纳,获得10
7秒前
赫初晴完成签到 ,获得积分10
7秒前
平淡的亦丝应助明研采纳,获得20
7秒前
9秒前
库外发布了新的文献求助10
10秒前
汉堡包应助清新的冷松采纳,获得10
10秒前
从心应助LiShin采纳,获得10
10秒前
帅气的听莲完成签到,获得积分10
10秒前
英姑应助Areslcy采纳,获得10
10秒前
善学以致用应助zxz采纳,获得10
11秒前
whatever应助luoshi采纳,获得10
12秒前
12秒前
科研通AI5应助徐徐采纳,获得10
13秒前
shouyu29应助MADKAI采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762