亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel metric-based model with the ability of zero-shot learning for intelligent fault diagnosis

计算机科学 Softmax函数 断层(地质) 公制(单位) 人工智能 小波 平滑的 模式识别(心理学) 卷积神经网络 数据挖掘 实时计算 计算机视觉 运营管理 地质学 经济 地震学
作者
Caizi Fan,Yongchao Zhang,Hui Ma,Zeyu Ma,Kun Yu,Songtao Zhao,Xiaoxu Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:129: 107605-107605 被引量:37
标识
DOI:10.1016/j.engappai.2023.107605
摘要

Intelligent fault diagnosis plays an important role in maintaining the safe and reliable operation of rotating machinery. However, the data collected in real engineering scenarios may be severely insufficient, which presents challenges to the intelligent fault diagnosis methods. To address this problem, this paper introduces a metric-based meta learning approach for gear fault diagnosis under zero shot conditions. Firstly, a gear-rotor dynamics model is established to simulate the vibration signals under different fault conditions. And the signals are converted into energy maps through wavelet transformation to provide frequency domain fault features. Secondly, a deep convolutional network is employed as the feature extraction module to construct the prototype representations by calculating the average embedding within each fault class. Then, the distances between the actual signals collected from the gear test rig and the class prototypes are computed. Finally, the softmax is applied to convert these distances into probability distributions for outputting the predicted fault classes. Furthermore, label smoothing technology is introduced to mitigate the probability distribution differences between simulated signals and real signals. The experimental results demonstrate that the average diagnostic accuracy of the proposed model reaches 98.9%, which is better than other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助顾灵毓采纳,获得10
1秒前
1秒前
等待完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
10秒前
25秒前
27秒前
aaa发布了新的文献求助10
32秒前
48秒前
vetzlk完成签到 ,获得积分10
49秒前
51秒前
海咲umi发布了新的文献求助10
51秒前
闵凝竹完成签到 ,获得积分0
57秒前
海咲umi完成签到,获得积分10
58秒前
Jasper应助海咲umi采纳,获得10
1分钟前
微卫星不稳定完成签到 ,获得积分0
1分钟前
稻草人完成签到 ,获得积分10
1分钟前
1分钟前
自由岛完成签到 ,获得积分20
1分钟前
燕海雪完成签到,获得积分10
1分钟前
1分钟前
Fiona发布了新的文献求助10
1分钟前
1分钟前
1分钟前
劉浏琉应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
1分钟前
劉浏琉应助科研通管家采纳,获得10
1分钟前
morena应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
劉浏琉应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
xixiazhiwang完成签到 ,获得积分10
2分钟前
WenwenBian完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
ww发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788299
求助须知:如何正确求助?哪些是违规求助? 5706062
关于积分的说明 15473390
捐赠科研通 4916398
什么是DOI,文献DOI怎么找? 2646316
邀请新用户注册赠送积分活动 1593974
关于科研通互助平台的介绍 1548368