A novel metric-based model with the ability of zero-shot learning for intelligent fault diagnosis

计算机科学 Softmax函数 断层(地质) 公制(单位) 人工智能 小波 平滑的 模式识别(心理学) 卷积神经网络 数据挖掘 实时计算 计算机视觉 运营管理 地质学 经济 地震学
作者
Caizi Fan,Yongchao Zhang,Hui Ma,Zeyu Ma,Kun Yu,Songtao Zhao,Xiaoxu Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:129: 107605-107605 被引量:15
标识
DOI:10.1016/j.engappai.2023.107605
摘要

Intelligent fault diagnosis plays an important role in maintaining the safe and reliable operation of rotating machinery. However, the data collected in real engineering scenarios may be severely insufficient, which presents challenges to the intelligent fault diagnosis methods. To address this problem, this paper introduces a metric-based meta learning approach for gear fault diagnosis under zero shot conditions. Firstly, a gear-rotor dynamics model is established to simulate the vibration signals under different fault conditions. And the signals are converted into energy maps through wavelet transformation to provide frequency domain fault features. Secondly, a deep convolutional network is employed as the feature extraction module to construct the prototype representations by calculating the average embedding within each fault class. Then, the distances between the actual signals collected from the gear test rig and the class prototypes are computed. Finally, the softmax is applied to convert these distances into probability distributions for outputting the predicted fault classes. Furthermore, label smoothing technology is introduced to mitigate the probability distribution differences between simulated signals and real signals. The experimental results demonstrate that the average diagnostic accuracy of the proposed model reaches 98.9%, which is better than other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
TTOM发布了新的文献求助10
2秒前
2秒前
XuBao发布了新的文献求助10
2秒前
嘻哈hang应助哈哈婷采纳,获得10
3秒前
111发布了新的文献求助10
3秒前
dreamboat发布了新的文献求助10
5秒前
6秒前
DijiaXu应助耀阳采纳,获得10
6秒前
7秒前
丘比特应助luf采纳,获得10
8秒前
8秒前
11秒前
kuiuLinvk完成签到,获得积分10
12秒前
乐正熠彤完成签到,获得积分10
15秒前
15秒前
xfyxxh完成签到,获得积分10
16秒前
Liufgui应助啊哭采纳,获得10
17秒前
17秒前
18秒前
林洁佳完成签到,获得积分10
18秒前
天天快乐应助优雅的抚琴采纳,获得10
18秒前
20秒前
大兵发布了新的文献求助10
20秒前
21秒前
22秒前
林洁佳发布了新的文献求助10
22秒前
小马甲应助尊敬的凌晴采纳,获得10
23秒前
小赵很努力完成签到,获得积分10
23秒前
fate8680发布了新的文献求助10
23秒前
捉一只小鱼完成签到,获得积分10
23秒前
娟姐发布了新的文献求助20
23秒前
CipherSage应助水加冰糖采纳,获得10
24秒前
书祝完成签到,获得积分10
25秒前
在水一方应助科研通管家采纳,获得10
25秒前
木木应助科研通管家采纳,获得10
25秒前
ding应助科研通管家采纳,获得20
26秒前
大个应助科研通管家采纳,获得10
26秒前
木心应助科研通管家采纳,获得20
26秒前
丘比特应助科研通管家采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998871
求助须知:如何正确求助?哪些是违规求助? 3538355
关于积分的说明 11273977
捐赠科研通 3277299
什么是DOI,文献DOI怎么找? 1807509
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075