材料科学
结晶度
钙钛矿(结构)
纳米晶
分解水
氧化物
化学工程
钽
纳米技术
无机化学
光催化
催化作用
化学
冶金
复合材料
工程类
生物化学
作者
Jiadong Xiao,Mamiko Nakabayashi,Takashi Hisatomi,Junie Jhon M. Vequizo,Wenpeng Li,Kaihong Chen,Xiaoping Tao,Akira Yamakata,Naoya Shibata,Tsuyoshi Takata,Yasunobu Inoue,Kazunari Domen
标识
DOI:10.1038/s41467-023-43838-3
摘要
A long-standing trade-off exists between improving crystallinity and minimizing particle size in the synthesis of perovskite-type transition-metal oxynitride photocatalysts via the thermal nitridation of commonly used metal oxide and carbonate precursors. Here, we overcome this limitation to fabricate ATaO2N (A = Sr, Ca, Ba) single nanocrystals with particle sizes of several tens of nanometers, excellent crystallinity and tunable long-wavelength response via thermal nitridation of mixtures of tantalum disulfide, metal hydroxides (A(OH)2), and molten-salt fluxes (e.g., SrCl2) as precursors. The SrTaO2N nanocrystals modified with a tailored Ir-Pt alloy@Cr2O3 cocatalyst evolved H2 around two orders of magnitude more efficiently than the previously reported SrTaO2N photocatalysts, with a record solar-to-hydrogen energy conversion efficiency of 0.15% for SrTaO2N in Z-scheme water splitting. Our findings enable the synthesis of perovskite-type transition-metal oxynitride nanocrystals by thermal nitridation and pave the way for manufacturing advanced long-wavelength-responsive particulate photocatalysts for efficient solar energy conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI