Cost-Effective Acquisition of First-Party Data for Business Analytics

计算机科学 商业分析 分析 商业智能 数据分析 数据科学 运筹学 业务 数据库 数据挖掘 商业模式 营销 业务分析 数学
作者
Xiaoping Liu,Xiao‐Bai Li
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2022.0037
摘要

Customer data acquisition is an important task in data-driven business analytics. Recently, there has been a growing interest in the effective use of an organization’s internal customer data, also known as first-party data. This work studies the acquisition of new data for business analytics based on first-party data resource. We address issues related to both acquisition cost and data quality. To reduce acquisition cost, we consider using auction-based methods, such as the generalized second price (GSP) auction, for acquiring data with differential prices for different customers. We find that the GSP-based data acquisition method incurs a lower cost and/or achieves a higher response rate than fixed price methods. To maximize data quality, we propose novel optimization models for different data acquisition methods and data quality measures. The proposed models maximize the quality of the acquired data while satisfying budget constraints. We derive and discuss the solutions to the optimization models analytically and provide managerial insights from the solutions. The proposed approach is effective in increasing customer responses, reducing selection bias, and enabling more accurate estimation and prediction for business analytics. The results of the experimental evaluation demonstrate the advantage of the proposed approach over existing data acquisition methods. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0037 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0037 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
当遇完成签到,获得积分10
2秒前
雪小岳关注了科研通微信公众号
3秒前
田様应助Truman采纳,获得10
4秒前
5秒前
Singularity应助anananan采纳,获得20
6秒前
笙默0329发布了新的文献求助10
7秒前
汉堡包应助桃桃桃桃桃采纳,获得10
7秒前
6666发布了新的文献求助10
8秒前
8秒前
胡子完成签到,获得积分10
8秒前
困敦发布了新的文献求助10
8秒前
李健应助Hustle采纳,获得10
8秒前
8秒前
zzz发布了新的文献求助10
9秒前
wang完成签到,获得积分10
9秒前
复成完成签到 ,获得积分10
11秒前
msd2phd完成签到,获得积分10
12秒前
wang发布了新的文献求助10
12秒前
bkagyin应助轩仔采纳,获得10
13秒前
眼睛大善斓完成签到,获得积分10
13秒前
jdj发布了新的文献求助10
14秒前
minmin完成签到,获得积分10
14秒前
叩桥不渡完成签到,获得积分10
15秒前
桃桃桃桃桃完成签到,获得积分10
15秒前
liniubi完成签到,获得积分10
15秒前
16秒前
Accepted应助Faith采纳,获得10
16秒前
Liang完成签到 ,获得积分10
18秒前
芝麻球ii完成签到,获得积分10
19秒前
tombulibo完成签到,获得积分10
19秒前
20秒前
21秒前
加菲丰丰应助Fury采纳,获得20
21秒前
22秒前
23秒前
苯二氮卓发布了新的文献求助10
24秒前
温暖寻琴发布了新的文献求助10
26秒前
Truman发布了新的文献求助10
26秒前
科研通AI2S应助Hanniewei采纳,获得10
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141417
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802814
捐赠科研通 2448645
什么是DOI,文献DOI怎么找? 1302695
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237