Cost-Effective Acquisition of First-Party Data for Business Analytics

计算机科学 商业分析 分析 商业智能 数据分析 数据科学 运筹学 业务 数据库 数据挖掘 商业模式 营销 业务分析 数学
作者
Xiaoping Liu,Xiao‐Bai Li
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2022.0037
摘要

Customer data acquisition is an important task in data-driven business analytics. Recently, there has been a growing interest in the effective use of an organization’s internal customer data, also known as first-party data. This work studies the acquisition of new data for business analytics based on first-party data resource. We address issues related to both acquisition cost and data quality. To reduce acquisition cost, we consider using auction-based methods, such as the generalized second price (GSP) auction, for acquiring data with differential prices for different customers. We find that the GSP-based data acquisition method incurs a lower cost and/or achieves a higher response rate than fixed price methods. To maximize data quality, we propose novel optimization models for different data acquisition methods and data quality measures. The proposed models maximize the quality of the acquired data while satisfying budget constraints. We derive and discuss the solutions to the optimization models analytically and provide managerial insights from the solutions. The proposed approach is effective in increasing customer responses, reducing selection bias, and enabling more accurate estimation and prediction for business analytics. The results of the experimental evaluation demonstrate the advantage of the proposed approach over existing data acquisition methods. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0037 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0037 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XL发布了新的文献求助10
刚刚
1秒前
小鱼应助等等采纳,获得10
1秒前
Jasper应助等等采纳,获得10
1秒前
1秒前
Hello应助粉色水蒸蛋采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
所所应助小吉麻麻采纳,获得10
3秒前
3秒前
世界小奇发布了新的文献求助10
3秒前
乐乐应助默默的含烟采纳,获得10
4秒前
ss发布了新的文献求助10
4秒前
4秒前
bjyx完成签到,获得积分10
5秒前
善学以致用应助111采纳,获得10
6秒前
loser发布了新的文献求助10
6秒前
6秒前
斯文若之发布了新的文献求助10
6秒前
走四方发布了新的文献求助10
6秒前
Ava应助yxy采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
XQJ发布了新的文献求助10
9秒前
10秒前
CUI完成签到,获得积分10
10秒前
10秒前
10秒前
ikutovaya完成签到,获得积分10
10秒前
畅快安白发布了新的文献求助10
11秒前
SciGPT应助研友_8QxayZ采纳,获得10
11秒前
脑洞疼应助璐璐核桃露采纳,获得10
11秒前
ho发布了新的文献求助50
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679