A large dataset curation and benchmark for drug target interaction

水准点(测量) 计算机科学 数据整理 计算生物学 情报检索 数据科学 人工智能 机器学习 自然语言处理 生物 地理 地图学
作者
Alex Golts,Vadim Ratner,Yoel Shoshan,Moshe Raboh,Sagi Polaczek,Michal Ozery-Flato,Daniel Shats,Liam Hazan,Sivan Ravid,Efrat Hexter
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2401.17174
摘要

Bioactivity data plays a key role in drug discovery and repurposing. The resource-demanding nature of \textit{in vitro} and \textit{in vivo} experiments, as well as the recent advances in data-driven computational biochemistry research, highlight the importance of \textit{in silico} drug target interaction (DTI) prediction approaches. While numerous large public bioactivity data sources exist, research in the field could benefit from better standardization of existing data resources. At present, different research works that share similar goals are often difficult to compare properly because of different choices of data sources and train/validation/test split strategies. Additionally, many works are based on small data subsets, leading to results and insights of possible limited validity. In this paper we propose a way to standardize and represent efficiently a very large dataset curated from multiple public sources, split the data into train, validation and test sets based on different meaningful strategies, and provide a concrete evaluation protocol to accomplish a benchmark. We analyze the proposed data curation, prove its usefulness and validate the proposed benchmark through experimental studies based on an existing neural network model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
orixero应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
4秒前
田様应助科研通管家采纳,获得30
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
何照人应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
Able应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得20
5秒前
科目三应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
太叔捕发布了新的文献求助10
5秒前
6秒前
搜集达人应助rotator采纳,获得10
7秒前
星弟完成签到,获得积分10
7秒前
完美世界应助我的山本采纳,获得10
8秒前
shinn发布了新的文献求助10
9秒前
10秒前
充电宝应助汽水121856采纳,获得10
11秒前
12秒前
龙仔子发布了新的文献求助10
12秒前
15秒前
15秒前
Eternitymaria发布了新的文献求助10
17秒前
18秒前
共享精神应助scabbard24采纳,获得10
19秒前
19秒前
落卿然发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498