3d打印
截骨术
尸体痉挛
髓内棒
股骨
医学
软组织
口腔正畸科
外科
生物医学工程
作者
Reza Bergemann,Gregory R. Roytman,Lidia Ani,Alim F. Ramji,Michael Leslie,Steven M. Tommasini,Daniel H. Wiznia
标识
DOI:10.1186/s41205-024-00204-3
摘要
Abstract Background The extended trochanteric osteotomy (ETO) is a surgical technique utilized to expose the intramedullary canal of the proximal femur, protect the soft tissues and promote reliable healing. However, imprecise execution of the osteotomy can lead to fracture, soft tissue injury, non-union, and unnecessary morbidity. We developed a technique to create patient specific, 3D-printed cutting guides to aid in accurate positioning of the ETO and improve osteotomy quality and outcomes. Methods Patient specific cutting guides were created based on CT scans using Synopysis Simpleware ScanIP and Solidworks. Custom 3D printed cutting guides were tested on synthetic femurs with foam cortical shells and on cadaveric femurs. To confirm accuracy of the osteotomies, dimensions of the performed osteotomies were compared to the virtually planned osteotomies. Results Use of the patient specific ETO cutting guides resulted in successful osteotomies, exposing the femoral canal and the femoral stem both in synthetic sawbone and cadaveric testing. In cadaveric testing, the guides allowed for osteotomies without fracture and cuts made using the guide were accurate within 6 percent error from the virtually planned osteotomy. Conclusion The 3D-printed patient specific cutting guides used to aid in ETOs proved to be accurate. Through the iterative development of cutting guides, we found that a simple design was key to a reliable and accurate guide. While future clinical trials in human subjects are needed, we believe our custom 3D printed cutting guide design to be effective at aiding in performing ETOs for revision total hip arthroplasty surgeries.
科研通智能强力驱动
Strongly Powered by AbleSci AI