EM-Trans: Edge-Aware Multimodal Transformer for RGB-D Salient Object Detection

计算机视觉 人工智能 变压器 RGB颜色模型 突出 计算机科学 互补性(分子生物学) GSM演进的增强数据速率 水准点(测量) 模式识别(心理学) 工程类 电气工程 电压 遗传学 生物 地理 大地测量学
作者
Geng Chen,Qingyue Wang,Bo Dong,Ruitao Ma,Nian Liu,Huazhu Fu,Yong Xia
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3175-3188 被引量:5
标识
DOI:10.1109/tnnls.2024.3358858
摘要

RGB-D salient object detection (SOD) has gained tremendous attention in recent years. In particular, transformer has been employed and shown great potential. However, existing transformer models usually overlook the vital edge information, which is a major issue restricting the further improvement of SOD accuracy. To this end, we propose a novel edge-aware RGB-D SOD transformer, called, which explicitly models the edge information in a dual-band decomposition framework. Specifically, we employ two parallel decoder networks to learn the high-frequency edge and low-frequency body features from the low-and high-level features extracted from a two-steam multimodal backbone network, respectively. Next, we propose a cross-attention complementarity exploration module to enrich the edge/body features by exploiting the multimodal complementarity information. The refined features are then fed into our proposed color-hint guided fusion module for enhancing the depth feature and fusing the multimodal features. Finally, the resulting features are fused using our deeply supervised progressive fusion module, which progressively integrates edge and body features for predicting saliency maps. Our model explicitly considers the edge information for accurate RGB-D SOD, overcoming the limitations of existing methods and effectively improving the performance. Extensive experiments on benchmark datasets demonstrate that is an effective RGB-D SOD framework that outperforms the current state-of-the-art models, both quantitatively and qualitatively. A further extension to RGB-T SOD demonstrates the promising potential of our model in various kinds of multimodal SOD tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
wzh19940205完成签到,获得积分10
1秒前
柚又发布了新的文献求助10
2秒前
UsihaGuwalgiya完成签到,获得积分10
2秒前
2秒前
妮妮完成签到,获得积分10
3秒前
徐小发布了新的文献求助10
3秒前
以戈完成签到,获得积分10
3秒前
4秒前
GAS完成签到,获得积分10
5秒前
Ava应助安静沅采纳,获得20
5秒前
6秒前
6秒前
搬砖人完成签到,获得积分10
6秒前
yuan完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
leilani完成签到,获得积分10
8秒前
GAS发布了新的文献求助10
8秒前
9秒前
苏远山爱吃西红柿完成签到,获得积分10
9秒前
lilivite应助司空豁采纳,获得20
10秒前
YXH发布了新的文献求助10
10秒前
10秒前
水星摸鱼完成签到,获得积分10
11秒前
smile发布了新的文献求助10
12秒前
12秒前
小蘑菇应助Coral.采纳,获得10
12秒前
Yang完成签到,获得积分10
13秒前
壮观的远侵完成签到,获得积分10
14秒前
14秒前
IvanMcRae应助牛奶牛奶采纳,获得10
14秒前
田様应助lzw采纳,获得10
14秒前
14秒前
科研通AI2S应助徐小采纳,获得10
14秒前
CipherSage应助徐小采纳,获得10
14秒前
1235354365434应助wangwang采纳,获得10
18秒前
迟迟发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956302
求助须知:如何正确求助?哪些是违规求助? 3502493
关于积分的说明 11108085
捐赠科研通 3233179
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870515
科研通“疑难数据库(出版商)”最低求助积分说明 802105