EM-Trans: Edge-Aware Multimodal Transformer for RGB-D Salient Object Detection

计算机视觉 人工智能 变压器 RGB颜色模型 突出 计算机科学 互补性(分子生物学) GSM演进的增强数据速率 水准点(测量) 模式识别(心理学) 工程类 电气工程 电压 大地测量学 生物 地理 遗传学
作者
Geng Chen,Qingyue Wang,Bo Dong,Ruitao Ma,Nian Liu,Huazhu Fu,Yong Xia
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3175-3188 被引量:28
标识
DOI:10.1109/tnnls.2024.3358858
摘要

RGB-D salient object detection (SOD) has gained tremendous attention in recent years. In particular, transformer has been employed and shown great potential. However, existing transformer models usually overlook the vital edge information, which is a major issue restricting the further improvement of SOD accuracy. To this end, we propose a novel edge-aware RGB-D SOD transformer, called EM-Trans, which explicitly models the edge information in a dual-band decomposition framework. Specifically, we employ two parallel decoder networks to learn the high-frequency edge and low-frequency body features from the low- and high-level features extracted from a two-steam multimodal backbone network, respectively. Next, we propose a cross-attention complementarity exploration module to enrich the edge/body features by exploiting the multimodal complementarity information. The refined features are then fed into our proposed color-hint guided fusion module for enhancing the depth feature and fusing the multimodal features. Finally, the resulting features are fused using our deeply supervised progressive fusion module, which progressively integrates edge and body features for predicting saliency maps. Our model explicitly considers the edge information for accurate RGB-D SOD, overcoming the limitations of existing methods and effectively improving the performance. Extensive experiments on benchmark datasets demonstrate that EM-Trans is an effective RGB-D SOD framework that outperforms the current state-of-the-art models, both quantitatively and qualitatively. A further extension to RGB-T SOD demonstrates the promising potential of our model in various kinds of multimodal SOD tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WTX完成签到,获得积分0
刚刚
叩叩发布了新的文献求助10
1秒前
黄74185296完成签到,获得积分10
1秒前
toki完成签到,获得积分10
3秒前
bird0912完成签到,获得积分10
4秒前
济民财完成签到,获得积分10
5秒前
zhangj696完成签到,获得积分10
5秒前
NeoWu完成签到,获得积分10
8秒前
是我不得开心妍完成签到 ,获得积分10
8秒前
归于晏完成签到,获得积分10
9秒前
蒙蒙完成签到,获得积分20
10秒前
YiWei完成签到 ,获得积分10
10秒前
12秒前
李白完成签到,获得积分10
12秒前
温柔的蛋挞完成签到,获得积分10
13秒前
pp完成签到,获得积分10
13秒前
思源应助叩叩采纳,获得10
14秒前
posh完成签到 ,获得积分10
15秒前
ajing完成签到,获得积分10
15秒前
FooLeup立仔完成签到,获得积分10
15秒前
马东完成签到 ,获得积分10
17秒前
18秒前
HUangg完成签到,获得积分10
19秒前
YY完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
老猫头鹰完成签到,获得积分10
21秒前
21秒前
魁梧的海秋完成签到,获得积分10
22秒前
不想看文献完成签到,获得积分10
22秒前
22秒前
wwqc完成签到,获得积分0
22秒前
时尚雨兰完成签到,获得积分10
23秒前
蒙蒙发布了新的文献求助10
23秒前
慕青应助sunwei采纳,获得10
23秒前
CharlieYue完成签到,获得积分10
24秒前
张琨完成签到 ,获得积分10
26秒前
潘涵完成签到,获得积分10
27秒前
yuan完成签到,获得积分10
28秒前
无名完成签到,获得积分10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651555
求助须知:如何正确求助?哪些是违规求助? 4785100
关于积分的说明 15054111
捐赠科研通 4810151
什么是DOI,文献DOI怎么找? 2572990
邀请新用户注册赠送积分活动 1528919
关于科研通互助平台的介绍 1487917