计算机视觉
人工智能
变压器
RGB颜色模型
突出
计算机科学
互补性(分子生物学)
GSM演进的增强数据速率
水准点(测量)
模式识别(心理学)
工程类
电气工程
电压
大地测量学
生物
地理
遗传学
作者
Geng Chen,Qingyue Wang,Bo Dong,Ruitao Ma,Nian Liu,Huazhu Fu,Yong Xia
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-14
被引量:2
标识
DOI:10.1109/tnnls.2024.3358858
摘要
RGB-D salient object detection (SOD) has gained tremendous attention in recent years. In particular, transformer has been employed and shown great potential. However, existing transformer models usually overlook the vital edge information, which is a major issue restricting the further improvement of SOD accuracy. To this end, we propose a novel edge-aware RGB-D SOD transformer, called, which explicitly models the edge information in a dual-band decomposition framework. Specifically, we employ two parallel decoder networks to learn the high-frequency edge and low-frequency body features from the low-and high-level features extracted from a two-steam multimodal backbone network, respectively. Next, we propose a cross-attention complementarity exploration module to enrich the edge/body features by exploiting the multimodal complementarity information. The refined features are then fed into our proposed color-hint guided fusion module for enhancing the depth feature and fusing the multimodal features. Finally, the resulting features are fused using our deeply supervised progressive fusion module, which progressively integrates edge and body features for predicting saliency maps. Our model explicitly considers the edge information for accurate RGB-D SOD, overcoming the limitations of existing methods and effectively improving the performance. Extensive experiments on benchmark datasets demonstrate that is an effective RGB-D SOD framework that outperforms the current state-of-the-art models, both quantitatively and qualitatively. A further extension to RGB-T SOD demonstrates the promising potential of our model in various kinds of multimodal SOD tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI