亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Orbital angular momentum-mediated machine learning for high-accuracy mode-feature encoding

角动量 模式(计算机接口) 编码(内存) 特征(语言学) 计算机科学 物理 人工智能 量子力学 人机交互 哲学 语言学
作者
Xinyuan Fang,Xiaonan Hu,Baoli Li,Hang Su,Ke Cheng,Haitao Luan,Miṅ Gu
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:13 (1)
标识
DOI:10.1038/s41377-024-01386-5
摘要

Abstract Machine learning with optical neural networks has featured unique advantages of the information processing including high speed, ultrawide bandwidths and low energy consumption because the optical dimensions (time, space, wavelength, and polarization) could be utilized to increase the degree of freedom. However, due to the lack of the capability to extract the information features in the orbital angular momentum (OAM) domain, the theoretically unlimited OAM states have never been exploited to represent the signal of the input/output nodes in the neural network model. Here, we demonstrate OAM-mediated machine learning with an all-optical convolutional neural network (CNN) based on Laguerre-Gaussian (LG) beam modes with diverse diffraction losses. The proposed CNN architecture is composed of a trainable OAM mode-dispersion impulse as a convolutional kernel for feature extraction, and deep-learning diffractive layers as a classifier. The resultant OAM mode-dispersion selectivity can be applied in information mode-feature encoding, leading to an accuracy as high as 97.2% for MNIST database through detecting the energy weighting coefficients of the encoded OAM modes, as well as a resistance to eavesdropping in point-to-point free-space transmission. Moreover, through extending the target encoded modes into multiplexed OAM states, we realize all-optical dimension reduction for anomaly detection with an accuracy of 85%. Our work provides a deep insight to the mechanism of machine learning with spatial modes basis, which can be further utilized to improve the performances of various machine-vision tasks by constructing the unsupervised learning-based auto-encoder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JacekYu完成签到 ,获得积分10
3秒前
xddll完成签到 ,获得积分10
5秒前
dxh完成签到 ,获得积分10
7秒前
FashionBoy应助由亦非采纳,获得20
13秒前
asd1576562308完成签到 ,获得积分10
17秒前
大方泥猴桃完成签到,获得积分10
25秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得30
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得50
26秒前
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
科目三应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
34秒前
SciGPT应助Reyi采纳,获得10
36秒前
37秒前
野菜生活发布了新的文献求助30
39秒前
杀殿完成签到 ,获得积分10
40秒前
43秒前
45秒前
Reyi发布了新的文献求助10
48秒前
安生发布了新的文献求助10
48秒前
轻松的雨竹完成签到 ,获得积分10
51秒前
甜蜜发带完成签到 ,获得积分10
55秒前
子平完成签到 ,获得积分0
56秒前
1分钟前
1分钟前
1分钟前
1分钟前
小杏韵发布了新的文献求助10
1分钟前
Reyi完成签到,获得积分20
1分钟前
由亦非发布了新的文献求助20
1分钟前
冷傲的灯泡应助渣渣采纳,获得10
1分钟前
咸鱼完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671207
求助须知:如何正确求助?哪些是违规求助? 3228098
关于积分的说明 9778369
捐赠科研通 2938347
什么是DOI,文献DOI怎么找? 1609853
邀请新用户注册赠送积分活动 760478
科研通“疑难数据库(出版商)”最低求助积分说明 735990