Supply Chain Inventory Management from the Perspective of “Cloud Supply Chain”—A Data Driven Approach

供应链 云计算 透视图(图形) 供应链管理 业务 库存管理 过程管理 运营管理 计算机科学 经济 营销 人工智能 操作系统
作者
Yi Tan,Liyi Gu,Senyu Xu,Mingchao Li
出处
期刊:Mathematics [MDPI AG]
卷期号:12 (4): 573-573
标识
DOI:10.3390/math12040573
摘要

This study systematically investigates the pivotal role of inventory management within the framework of “cloud supply chain” operations, emphasizing the efficacy of leveraging machine learning methodologies for inventory allocation with the dual objectives of cost reduction and heightened customer satisfaction. Employing a rigorous data-driven approach, the research endeavors to address inventory allocation challenges inherent in the complex dynamics of a “cloud supply chain” through the implementation of a two-stage model. Initially, machine learning is harnessed for demand forecasting, subsequently refined through the empirical distribution of forecast errors, culminating in the optimization of inventory allocation across various service levels.The empirical evaluation draws upon data derived from a reputable home appliance logistics company in China, revealing that, under conditions of ample data, the application of data-driven methods for inventory allocation surpasses the performance of traditional methods across diverse supply chain structures. Specifically, there is an improvement in accuracy by approximately 13% in an independent structure and about 16% in a dependent structure. This study transcends the constraints associated with examining a singular node, adopting an innovative research perspective that intricately explores the interplay among multiple nodes while elucidating the nuanced considerations germane to supply chain structure. Furthermore, it underscores the methodological significance of relying on extensive, large-scale data. The investigation brings to light the substantial impact of supply chain structure on safety stock allocation. In the context of a market characterized by highly uncertain demand, the strategic adaptation of the supply chain structure emerges as a proactive measure to avert potential disruptions in the supply chain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vkey完成签到,获得积分10
1秒前
SciGPT应助XF采纳,获得30
1秒前
Zhang发布了新的文献求助10
1秒前
1秒前
你求我一下完成签到,获得积分10
2秒前
ndsiu完成签到,获得积分10
2秒前
兔子完成签到,获得积分10
3秒前
桐桐应助白白采纳,获得10
3秒前
3秒前
5秒前
小王同学完成签到,获得积分10
5秒前
温柔寄柔完成签到 ,获得积分10
5秒前
han完成签到,获得积分10
5秒前
LYDZ2完成签到,获得积分10
5秒前
无花果应助等等采纳,获得40
6秒前
PXP发布了新的文献求助10
6秒前
打打应助恶魔阿T采纳,获得10
6秒前
drama_queen发布了新的文献求助100
6秒前
7秒前
8秒前
196yjl发布了新的文献求助10
8秒前
朴实剑通完成签到,获得积分10
8秒前
8秒前
斑鸟完成签到 ,获得积分10
9秒前
9秒前
棠棠发布了新的文献求助10
10秒前
江丹完成签到,获得积分10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
科研通AI6应助liuliu采纳,获得10
12秒前
谦让的仇血完成签到,获得积分10
12秒前
12秒前
xiaobo完成签到,获得积分10
12秒前
粗暴的慕儿完成签到,获得积分10
12秒前
Ruby发布了新的文献求助10
12秒前
12秒前
炎炎夏无声完成签到 ,获得积分10
13秒前
zhuchunjie完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434688
求助须知:如何正确求助?哪些是违规求助? 4547007
关于积分的说明 14205516
捐赠科研通 4467012
什么是DOI,文献DOI怎么找? 2448380
邀请新用户注册赠送积分活动 1439285
关于科研通互助平台的介绍 1416060