ARS-DETR: Aspect Ratio-Sensitive Detection Transformer for Aerial Oriented Object Detection

目标检测 计算机科学 遥感 计算机视觉 人工智能 模式识别(心理学) 地质学
作者
Ying Zeng,Yushi Chen,Xue Yang,Qingyun Li,Junchi Yan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:70
标识
DOI:10.1109/tgrs.2024.3364713
摘要

Existing oriented object detection in aerial images has progressed a lot in recent years and achieved a favorable success. However, high-precision oriented object detection in aerial images remains a challenging task. Some recent works have adopted the classification-based method to predict the angle in order to address boundary problem in angle. However, we have found that these works often neglect the sensitivity of objects with different aspect ratios to angle. At the same time, it is worth exploring a suitable way to improve the emerging transformer-based approaches in order to adapt them to oriented object detection. In this paper, we propose an Aspect Ratio Sensitive DEtection TRansformer, termed ARS-DETR, for oriented object detection in aerial images. Specifically, a new angle classification method, called Aspect Ratio aware Circle Smooth Label (AR-CSL), is proposed to smooth the angle label in a more reasonable way and discard the hyperparameter that introduced by previous work (e.g. CSL). Then, a rotated deformable attention module is designed to rotate the sampling points with the corresponding angles and eliminate the misalignment between region features and sampling points. Moreover, a dynamic weight coefficient according to the aspect ratio is adopted to calculate the angle loss. Comprehensive experiments on several challenging datasets demonstrate that our method achieves a competitive performance in the high-precision oriented object detection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忆往昔发布了新的文献求助10
刚刚
小柠发布了新的文献求助10
1秒前
飞跃完成签到,获得积分10
2秒前
小二郎应助又又采纳,获得10
2秒前
善学以致用应助辛勤依凝采纳,获得10
2秒前
liujian发布了新的文献求助10
3秒前
哆来米发布了新的文献求助30
3秒前
无花果应助波比大王采纳,获得10
3秒前
传统的孤丝完成签到 ,获得积分10
4秒前
6秒前
6秒前
6秒前
高兴的凝蝶完成签到,获得积分10
6秒前
7秒前
思源应助朴实的绿兰采纳,获得10
7秒前
大意的觅云完成签到,获得积分10
7秒前
huohuo143完成签到,获得积分10
8秒前
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
8秒前
求助应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
cc应助科研通管家采纳,获得20
8秒前
8秒前
町果果完成签到,获得积分10
8秒前
求助应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
8秒前
大个应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
打打应助科研通管家采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735472
求助须知:如何正确求助?哪些是违规求助? 5360845
关于积分的说明 15330104
捐赠科研通 4879619
什么是DOI,文献DOI怎么找? 2622182
邀请新用户注册赠送积分活动 1571280
关于科研通互助平台的介绍 1528116