亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ARS-DETR: Aspect Ratio-Sensitive Detection Transformer for Aerial Oriented Object Detection

目标检测 计算机科学 遥感 计算机视觉 人工智能 模式识别(心理学) 地质学
作者
Ying Zeng,Yushi Chen,Xue Yang,Qingyun Li,Junchi Yan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:66
标识
DOI:10.1109/tgrs.2024.3364713
摘要

Existing oriented object detection in aerial images has progressed a lot in recent years and achieved a favorable success. However, high-precision oriented object detection in aerial images remains a challenging task. Some recent works have adopted the classification-based method to predict the angle in order to address boundary problem in angle. However, we have found that these works often neglect the sensitivity of objects with different aspect ratios to angle. At the same time, it is worth exploring a suitable way to improve the emerging transformer-based approaches in order to adapt them to oriented object detection. In this paper, we propose an Aspect Ratio Sensitive DEtection TRansformer, termed ARS-DETR, for oriented object detection in aerial images. Specifically, a new angle classification method, called Aspect Ratio aware Circle Smooth Label (AR-CSL), is proposed to smooth the angle label in a more reasonable way and discard the hyperparameter that introduced by previous work (e.g. CSL). Then, a rotated deformable attention module is designed to rotate the sampling points with the corresponding angles and eliminate the misalignment between region features and sampling points. Moreover, a dynamic weight coefficient according to the aspect ratio is adopted to calculate the angle loss. Comprehensive experiments on several challenging datasets demonstrate that our method achieves a competitive performance in the high-precision oriented object detection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DondeDu完成签到,获得积分10
1秒前
球球子发布了新的文献求助10
6秒前
8秒前
shhoing应助niko采纳,获得10
8秒前
一一一应助niko采纳,获得10
8秒前
shhoing应助niko采纳,获得10
8秒前
Criminology34应助niko采纳,获得10
8秒前
shhoing应助niko采纳,获得10
8秒前
shhoing应助niko采纳,获得10
8秒前
GingerF应助niko采纳,获得50
8秒前
pluto应助niko采纳,获得10
8秒前
pluto应助niko采纳,获得10
8秒前
pluto应助niko采纳,获得10
8秒前
pluto应助niko采纳,获得10
13秒前
pluto应助niko采纳,获得10
13秒前
王誓言应助niko采纳,获得10
13秒前
Zx_1993应助niko采纳,获得10
13秒前
科研通AI2S应助niko采纳,获得10
13秒前
小蘑菇应助niko采纳,获得10
14秒前
zmj应助niko采纳,获得10
14秒前
zmj应助niko采纳,获得10
14秒前
BPATIENT应助niko采纳,获得10
14秒前
BPATIENT应助niko采纳,获得10
14秒前
BPATIENT应助niko采纳,获得10
19秒前
科研通AI2S应助niko采纳,获得10
19秒前
英姑应助niko采纳,获得10
19秒前
英俊的铭应助niko采纳,获得10
19秒前
嘴角微微仰起笑应助niko采纳,获得10
19秒前
pluto应助niko采纳,获得10
19秒前
隐形曼青应助niko采纳,获得10
19秒前
pluto应助niko采纳,获得10
19秒前
无花果应助niko采纳,获得10
19秒前
BPATIENT应助niko采纳,获得10
19秒前
梅天豪应助直率的雪巧采纳,获得10
22秒前
BPATIENT应助niko采纳,获得10
24秒前
Akim应助niko采纳,获得10
24秒前
我是老大应助niko采纳,获得10
24秒前
领导范儿应助niko采纳,获得10
24秒前
JamesPei应助niko采纳,获得10
24秒前
田様应助niko采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534299
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582560
捐赠科研通 4562573
什么是DOI,文献DOI怎么找? 2500245
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450962