Multiscale Attention Fusion Graph Network for Remote Sensing Building Change Detection

计算机科学 卷积神经网络 卷积(计算机科学) 编码器 图形 模式识别(心理学) 核(代数) 人工智能 背景(考古学) 数据挖掘 人工神经网络 理论计算机科学 数学 古生物学 组合数学 生物 操作系统
作者
Yu Shangguan,Jinjiang Li,Zheng Chen,Lu Ren,Zhen Hua
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:9
标识
DOI:10.1109/tgrs.2024.3356711
摘要

With the development of imaging systems and satellite technology, higher quality high-resolution RS images are being applied in building change detection (BCD) techniques. Methods based on convolutional neural network (CNN) have achieved excellent success in BCD techniques due to their excellent feature discrimination ability. However, CNN relies heavily on the geometry of prior conditions and is limited by the size of the convolution kernel, making it easy to ignore global information. This makes it difficult to capture the long-range dependence of different building targets and handle complex spatial relationships in high-resolution satellite RS images. Considering that graph convolutional neural networks (GCN) have powerful internal relationship learning capabilities, we propose a multi-scale attention fusion graph network (MAFGNet) in this paper. MAFGNet uses a dual graph convolution module (DGM), which includes a spatial graph convolution network (SGCN) and a channel graph convolution network (CGCN), to effectively explore the long-range relationship between the detection target and the global at the spatial and channel levels. We also design a multi-scale attention fusion encoder that includes channel and spatial attention fusion modules to effectively combine valuable information from multi-scale features. In addition, an atrous context self-attention pyramid (ACSP) is designed to combine multi-scale context to enhance the feature representation of change information. We conducted qualitative and quantitative comparative experiments on different datasets to validate the effectiveness of our model. The experimental results show that our method performs better than advanced methods in terms of overall accuracy and visualization details. Our code is available at https://github.com/ShangGY805/MAFG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻书包完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
波比不菜发布了新的文献求助10
2秒前
搜集达人应助小昊采纳,获得10
2秒前
科研通AI5应助研友_LOKqmL采纳,获得10
2秒前
努力搬砖努力干完成签到,获得积分10
2秒前
王七七发布了新的文献求助10
3秒前
gao完成签到,获得积分10
3秒前
Golden完成签到,获得积分10
4秒前
4秒前
4秒前
李健应助kopew采纳,获得10
4秒前
翟小七发布了新的文献求助10
4秒前
Orange应助一念初见采纳,获得10
4秒前
852应助吃颗电池采纳,获得10
5秒前
DongWei95完成签到,获得积分10
5秒前
烟花应助Gcheai_6采纳,获得10
5秒前
5秒前
yu_z完成签到 ,获得积分10
6秒前
饭二完成签到,获得积分10
6秒前
如沐春风发布了新的文献求助10
7秒前
He完成签到,获得积分10
7秒前
CC完成签到,获得积分10
8秒前
圆听听完成签到 ,获得积分10
9秒前
guhuihaozi发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
包容渊思发布了新的文献求助10
10秒前
Akim应助Liu采纳,获得10
10秒前
七七完成签到,获得积分10
10秒前
FashionBoy应助暮倦采纳,获得10
11秒前
Cadre发布了新的文献求助10
11秒前
英俊的铭应助Ffffa采纳,获得10
11秒前
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068898
求助须知:如何正确求助?哪些是违规求助? 4290461
关于积分的说明 13367590
捐赠科研通 4110300
什么是DOI,文献DOI怎么找? 2250926
邀请新用户注册赠送积分活动 1256106
关于科研通互助平台的介绍 1188606