Multi-scale Attention Fusion Graph Network for Remote Sensing Building Change Detection

变更检测 计算机科学 遥感 传感器融合 比例(比率) 图形 融合 人工智能 地质学 理论计算机科学 地图学 语言学 哲学 地理
作者
Yu Shangguan,Jinjiang Li,Zheng Chen,Lei Ren,Zhen Hua
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2024.3356711
摘要

With the development of imaging systems and satellite technology, higher quality high-resolution RS images are being applied in building change detection (BCD) techniques. Methods based on convolutional neural network (CNN) have achieved excellent success in BCD techniques due to their excellent feature discrimination ability. However, CNN relies heavily on the geometry of prior conditions and is limited by the size of the convolution kernel, making it easy to ignore global information. This makes it difficult to capture the long-range dependence of different building targets and handle complex spatial relationships in high-resolution satellite RS images. Considering that graph convolutional neural networks (GCN) have powerful internal relationship learning capabilities, we propose a multi-scale attention fusion graph network (MAFGNet) in this paper. MAFGNet uses a dual graph convolution module (DGM), which includes a spatial graph convolution network (SGCN) and a channel graph convolution network (CGCN), to effectively explore the long-range relationship between the detection target and the global at the spatial and channel levels. We also design a multi-scale attention fusion encoder that includes channel and spatial attention fusion modules to effectively combine valuable information from multi-scale features. In addition, an atrous context self-attention pyramid (ACSP) is designed to combine multi-scale context to enhance the feature representation of change information. We conducted qualitative and quantitative comparative experiments on different datasets to validate the effectiveness of our model. The experimental results show that our method performs better than advanced methods in terms of overall accuracy and visualization details. Our code is available at https://github.com/ShangGY805/MAFG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智的乐枫完成签到 ,获得积分10
刚刚
quhayley应助平安喜乐采纳,获得20
1秒前
啥时候能早睡完成签到 ,获得积分10
3秒前
雪白的稀发布了新的文献求助10
4秒前
vic发布了新的文献求助10
5秒前
forest完成签到,获得积分10
6秒前
麻黄阿葵发布了新的文献求助10
6秒前
鸡毛完成签到,获得积分10
8秒前
loveci完成签到,获得积分20
9秒前
简栗弗斯完成签到,获得积分10
12秒前
12秒前
领导范儿应助韩哈哈采纳,获得30
13秒前
小乐儿~完成签到,获得积分10
14秒前
OK完成签到,获得积分10
14秒前
Ava应助科研通管家采纳,获得10
15秒前
16秒前
甜蜜雅彤应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
16秒前
17秒前
22222发布了新的文献求助30
18秒前
范钰倩完成签到,获得积分20
20秒前
20秒前
22秒前
Yesir发布了新的文献求助10
23秒前
小二郎应助迷你的冰巧采纳,获得10
24秒前
25秒前
25秒前
26秒前
在水一方应助shawn采纳,获得10
26秒前
neurospine完成签到,获得积分10
28秒前
素和姣姣发布了新的文献求助10
29秒前
pzh完成签到 ,获得积分10
29秒前
华仔应助梦之哆啦采纳,获得10
30秒前
qwerty完成签到,获得积分10
31秒前
31秒前
32秒前
脑三问发布了新的文献求助10
36秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082549
求助须知:如何正确求助?哪些是违规求助? 2735847
关于积分的说明 7539036
捐赠科研通 2385432
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612830
版权声明 597685