Multiscale Attention Fusion Graph Network for Remote Sensing Building Change Detection

计算机科学 卷积神经网络 卷积(计算机科学) 编码器 图形 模式识别(心理学) 核(代数) 人工智能 背景(考古学) 数据挖掘 人工神经网络 理论计算机科学 数学 古生物学 组合数学 生物 操作系统
作者
Yu Shangguan,Jinjiang Li,Zheng Chen,Lu Ren,Zhen Hua
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:3
标识
DOI:10.1109/tgrs.2024.3356711
摘要

With the development of imaging systems and satellite technology, higher quality high-resolution RS images are being applied in building change detection (BCD) techniques. Methods based on convolutional neural network (CNN) have achieved excellent success in BCD techniques due to their excellent feature discrimination ability. However, CNN relies heavily on the geometry of prior conditions and is limited by the size of the convolution kernel, making it easy to ignore global information. This makes it difficult to capture the long-range dependence of different building targets and handle complex spatial relationships in high-resolution satellite RS images. Considering that graph convolutional neural networks (GCN) have powerful internal relationship learning capabilities, we propose a multi-scale attention fusion graph network (MAFGNet) in this paper. MAFGNet uses a dual graph convolution module (DGM), which includes a spatial graph convolution network (SGCN) and a channel graph convolution network (CGCN), to effectively explore the long-range relationship between the detection target and the global at the spatial and channel levels. We also design a multi-scale attention fusion encoder that includes channel and spatial attention fusion modules to effectively combine valuable information from multi-scale features. In addition, an atrous context self-attention pyramid (ACSP) is designed to combine multi-scale context to enhance the feature representation of change information. We conducted qualitative and quantitative comparative experiments on different datasets to validate the effectiveness of our model. The experimental results show that our method performs better than advanced methods in terms of overall accuracy and visualization details. Our code is available at https://github.com/ShangGY805/MAFG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樟脑丸完成签到,获得积分10
刚刚
刚刚
2秒前
你看着我眼睛完成签到 ,获得积分10
2秒前
勤劳万言发布了新的文献求助50
2秒前
DoctorHao完成签到,获得积分20
4秒前
5秒前
5秒前
6秒前
难不倒我完成签到,获得积分10
7秒前
haimianbaobao完成签到 ,获得积分10
7秒前
Keira完成签到 ,获得积分10
10秒前
novia完成签到,获得积分10
11秒前
11秒前
科研狗发布了新的文献求助20
13秒前
14秒前
16秒前
beichuanheqi发布了新的文献求助10
17秒前
skbkbe完成签到 ,获得积分10
17秒前
龙龙发布了新的文献求助10
17秒前
成就的念双完成签到,获得积分10
18秒前
19秒前
nini完成签到,获得积分10
21秒前
伶俐的化蛹完成签到,获得积分10
21秒前
21秒前
thx发布了新的文献求助30
22秒前
23秒前
积极的尔竹完成签到,获得积分10
25秒前
宝宝言兼发布了新的文献求助10
26秒前
wanci应助饱满若灵采纳,获得10
26秒前
SHY发布了新的文献求助10
27秒前
林蓥颖完成签到,获得积分10
27秒前
黄紫红完成签到 ,获得积分10
28秒前
Mingchun完成签到 ,获得积分10
28秒前
CAOHOU应助野性的小懒虫采纳,获得20
29秒前
隐形曼青应助焚心绚华绘采纳,获得10
31秒前
Reader01完成签到 ,获得积分0
32秒前
麦当当应助ni采纳,获得30
33秒前
34秒前
CipherSage应助科研狗采纳,获得10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667828
求助须知:如何正确求助?哪些是违规求助? 3226294
关于积分的说明 9769102
捐赠科研通 2936239
什么是DOI,文献DOI怎么找? 1608345
邀请新用户注册赠送积分活动 759646
科研通“疑难数据库(出版商)”最低求助积分说明 735434