Multiscale Attention Fusion Graph Network for Remote Sensing Building Change Detection

计算机科学 卷积神经网络 卷积(计算机科学) 编码器 图形 模式识别(心理学) 核(代数) 人工智能 背景(考古学) 数据挖掘 人工神经网络 理论计算机科学 数学 古生物学 组合数学 生物 操作系统
作者
Yu Shangguan,Jinjiang Li,Zheng Chen,Lu Ren,Zhen Hua
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:9
标识
DOI:10.1109/tgrs.2024.3356711
摘要

With the development of imaging systems and satellite technology, higher quality high-resolution RS images are being applied in building change detection (BCD) techniques. Methods based on convolutional neural network (CNN) have achieved excellent success in BCD techniques due to their excellent feature discrimination ability. However, CNN relies heavily on the geometry of prior conditions and is limited by the size of the convolution kernel, making it easy to ignore global information. This makes it difficult to capture the long-range dependence of different building targets and handle complex spatial relationships in high-resolution satellite RS images. Considering that graph convolutional neural networks (GCN) have powerful internal relationship learning capabilities, we propose a multi-scale attention fusion graph network (MAFGNet) in this paper. MAFGNet uses a dual graph convolution module (DGM), which includes a spatial graph convolution network (SGCN) and a channel graph convolution network (CGCN), to effectively explore the long-range relationship between the detection target and the global at the spatial and channel levels. We also design a multi-scale attention fusion encoder that includes channel and spatial attention fusion modules to effectively combine valuable information from multi-scale features. In addition, an atrous context self-attention pyramid (ACSP) is designed to combine multi-scale context to enhance the feature representation of change information. We conducted qualitative and quantitative comparative experiments on different datasets to validate the effectiveness of our model. The experimental results show that our method performs better than advanced methods in terms of overall accuracy and visualization details. Our code is available at https://github.com/ShangGY805/MAFG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助Ethan采纳,获得10
刚刚
Z1987完成签到,获得积分10
刚刚
白凌珍发布了新的文献求助10
刚刚
自由的水绿完成签到 ,获得积分10
刚刚
完美世界应助如意枫叶采纳,获得10
刚刚
忐忑的以旋完成签到,获得积分10
1秒前
1秒前
温暖的颜演完成签到,获得积分10
1秒前
艾斯喜爱发布了新的文献求助10
2秒前
2秒前
仲某某完成签到,获得积分10
2秒前
明明发布了新的文献求助10
2秒前
今后应助xiaxianong采纳,获得10
2秒前
4秒前
乘风破浪完成签到,获得积分10
4秒前
egnaro应助埋骨何须桑梓地采纳,获得10
4秒前
yannnis发布了新的文献求助10
5秒前
孙福禄应助Star1983采纳,获得10
5秒前
5秒前
6秒前
Demonmaster完成签到,获得积分10
6秒前
元气糖发布了新的文献求助10
6秒前
凝望那片海2020完成签到,获得积分10
6秒前
清爽问夏发布了新的文献求助10
6秒前
7秒前
7秒前
Lee完成签到 ,获得积分10
7秒前
7秒前
钱小二发布了新的文献求助10
8秒前
8秒前
315947完成签到,获得积分10
8秒前
9秒前
冰阔落发布了新的文献求助10
9秒前
鳐鱼完成签到,获得积分10
9秒前
哈哈哈完成签到,获得积分10
9秒前
李健的小迷弟应助egnaro采纳,获得30
9秒前
没什么是看文献解决不了的完成签到,获得积分10
10秒前
害怕的凡英完成签到,获得积分10
10秒前
收集快乐发布了新的文献求助10
10秒前
青云发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600