Remote sensing image classification using an ensemble framework without multiple classifiers

像素 集合(抽象数据类型) 多光谱图像 计算机科学 人工智能 高光谱成像 模式识别(心理学) 集成学习 上下文图像分类 图像(数学) 训练集 数据挖掘 机器学习 程序设计语言
作者
Peng Dou,Chunlin Huang,Weixiao Han,Jinliang Hou,Ying Zhang,Juan Gu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 190-209 被引量:20
标识
DOI:10.1016/j.isprsjprs.2023.12.012
摘要

Recently, ensemble multiple deep learning (DL) classifiers has been reported to be an effective method for improving remote sensing classification accuracy. Although these approaches still follow the conventional pattern of inputting instance features and outputting corresponding classes, they often overlook the intrinsic relationships between pixels beyond their spatial features. As a result, the diversity in the ensemble classification results primarily relies on different DL models. However, training the DL models consumes a significant amount of time, and training multiple networks not only incurs additional time costs but also affects the overall efficiency. To address this, a new approach has been proposed in this paper, which takes advantage of the relationships between pixels and their combinations to generate diverse classification results. It's a novel ensemble classification framework, termed as the Doublet-Based Ensemble Classification Framework (DBECF), which eliminates the need for multiple classifiers. The DBECF starts by utilizing the training set to combine different samples to generate doublets. Then, features are assigned to these doublets through an exponentiation operation, resulting in a doublet training set. Using both the original training set and the derived doublet datasets, the DBECF is trained. For each input pixel, the DBECF produces multiple classification results, which are then integrated to obtain a more accurate output. To validate the proposed approach, experiments were conducted on three datasets, including multispectral images, hyperspectral images, and time series images. The maximum accuracies achieved by DBECF on the three datasets are 87.80 %, 97.71 %, and 83.51 %, respectively. In comparison to the contrastive methods, the incremental improvements in accuracy are 3.73 %, 7.66 %, and 9.16 %, respectively. The experimental results indicate that no matter using DL or non-deep learning for training, our proposed framework achieves progress on accuracy improvement outperforming classifications using comparative approach that based on single instance. This research provides a new perspective on the combination of DL and ensemble learning, highlighting its important implications and practical value in enhancing classification accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ta发布了新的文献求助10
刚刚
AAA完成签到,获得积分10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
ll应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
柯一一应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
smottom应助科研通管家采纳,获得30
2秒前
2秒前
yar应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
shinn发布了新的文献求助20
3秒前
3秒前
猛猛冲发布了新的文献求助10
4秒前
慕青应助西西采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
扶桑发布了新的文献求助10
6秒前
Hello应助自信念云采纳,获得10
7秒前
8秒前
Asteria完成签到,获得积分10
10秒前
仲达发布了新的文献求助10
10秒前
10秒前
能干的邹完成签到 ,获得积分10
10秒前
所所应助王梦豪采纳,获得10
11秒前
11秒前
11秒前
Jasper应助董豆豆采纳,获得10
12秒前
叽里呱啦完成签到 ,获得积分10
13秒前
坦率的路人完成签到,获得积分10
13秒前
清脆的土豆完成签到,获得积分0
14秒前
易逢春发布了新的文献求助10
14秒前
15秒前
领导范儿应助shinn采纳,获得10
16秒前
内向寒云发布了新的文献求助10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975339
求助须知:如何正确求助?哪些是违规求助? 3519670
关于积分的说明 11199199
捐赠科研通 3256002
什么是DOI,文献DOI怎么找? 1798043
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305