清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Remote sensing image classification using an ensemble framework without multiple classifiers

像素 集合(抽象数据类型) 多光谱图像 计算机科学 人工智能 高光谱成像 模式识别(心理学) 集成学习 上下文图像分类 图像(数学) 训练集 数据挖掘 机器学习 程序设计语言
作者
Peng Dou,Chunlin Huang,Weixiao Han,Jinliang Hou,Ying Zhang,Juan Gu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 190-209 被引量:20
标识
DOI:10.1016/j.isprsjprs.2023.12.012
摘要

Recently, ensemble multiple deep learning (DL) classifiers has been reported to be an effective method for improving remote sensing classification accuracy. Although these approaches still follow the conventional pattern of inputting instance features and outputting corresponding classes, they often overlook the intrinsic relationships between pixels beyond their spatial features. As a result, the diversity in the ensemble classification results primarily relies on different DL models. However, training the DL models consumes a significant amount of time, and training multiple networks not only incurs additional time costs but also affects the overall efficiency. To address this, a new approach has been proposed in this paper, which takes advantage of the relationships between pixels and their combinations to generate diverse classification results. It's a novel ensemble classification framework, termed as the Doublet-Based Ensemble Classification Framework (DBECF), which eliminates the need for multiple classifiers. The DBECF starts by utilizing the training set to combine different samples to generate doublets. Then, features are assigned to these doublets through an exponentiation operation, resulting in a doublet training set. Using both the original training set and the derived doublet datasets, the DBECF is trained. For each input pixel, the DBECF produces multiple classification results, which are then integrated to obtain a more accurate output. To validate the proposed approach, experiments were conducted on three datasets, including multispectral images, hyperspectral images, and time series images. The maximum accuracies achieved by DBECF on the three datasets are 87.80 %, 97.71 %, and 83.51 %, respectively. In comparison to the contrastive methods, the incremental improvements in accuracy are 3.73 %, 7.66 %, and 9.16 %, respectively. The experimental results indicate that no matter using DL or non-deep learning for training, our proposed framework achieves progress on accuracy improvement outperforming classifications using comparative approach that based on single instance. This research provides a new perspective on the combination of DL and ensemble learning, highlighting its important implications and practical value in enhancing classification accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
Balance Man完成签到 ,获得积分10
17秒前
隐形曼青应助Ggap1采纳,获得10
23秒前
小余同学发布了新的文献求助10
24秒前
weiweiwu12完成签到,获得积分10
43秒前
青出于蓝蔡完成签到,获得积分10
48秒前
满意机器猫完成签到 ,获得积分10
1分钟前
霜二完成签到 ,获得积分10
1分钟前
AZN完成签到 ,获得积分10
1分钟前
姆姆没买完成签到 ,获得积分10
1分钟前
今后应助阿尔法贝塔采纳,获得10
1分钟前
charih完成签到 ,获得积分10
1分钟前
陌上之心完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
宇文雨文完成签到 ,获得积分10
1分钟前
1分钟前
橙子完成签到 ,获得积分10
1分钟前
xiaofeixia完成签到 ,获得积分10
1分钟前
jlwang完成签到,获得积分10
1分钟前
2分钟前
2分钟前
lty完成签到,获得积分20
2分钟前
孟寐以求完成签到 ,获得积分10
2分钟前
2分钟前
fkdbdy发布了新的文献求助10
2分钟前
朴子完成签到 ,获得积分10
2分钟前
香蕉觅云应助勇往直前采纳,获得10
2分钟前
勇往直前完成签到,获得积分10
2分钟前
widesky777完成签到 ,获得积分0
2分钟前
carne完成签到,获得积分10
2分钟前
2分钟前
上善若水完成签到 ,获得积分10
2分钟前
勇往直前发布了新的文献求助10
2分钟前
Tumbleweed668完成签到,获得积分20
3分钟前
科研狗完成签到 ,获得积分0
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Dongjie完成签到,获得积分10
3分钟前
蔡勇强完成签到 ,获得积分10
3分钟前
雷小牛完成签到 ,获得积分10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968532
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167309
捐赠科研通 3248700
什么是DOI,文献DOI怎么找? 1794453
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664