Remote sensing image classification using an ensemble framework without multiple classifiers

像素 集合(抽象数据类型) 多光谱图像 计算机科学 人工智能 高光谱成像 模式识别(心理学) 集成学习 上下文图像分类 图像(数学) 训练集 数据挖掘 机器学习 程序设计语言
作者
Peng Dou,Chunlin Huang,Weixiao Han,Jinliang Hou,Ying Zhang,Juan Gu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 190-209 被引量:20
标识
DOI:10.1016/j.isprsjprs.2023.12.012
摘要

Recently, ensemble multiple deep learning (DL) classifiers has been reported to be an effective method for improving remote sensing classification accuracy. Although these approaches still follow the conventional pattern of inputting instance features and outputting corresponding classes, they often overlook the intrinsic relationships between pixels beyond their spatial features. As a result, the diversity in the ensemble classification results primarily relies on different DL models. However, training the DL models consumes a significant amount of time, and training multiple networks not only incurs additional time costs but also affects the overall efficiency. To address this, a new approach has been proposed in this paper, which takes advantage of the relationships between pixels and their combinations to generate diverse classification results. It's a novel ensemble classification framework, termed as the Doublet-Based Ensemble Classification Framework (DBECF), which eliminates the need for multiple classifiers. The DBECF starts by utilizing the training set to combine different samples to generate doublets. Then, features are assigned to these doublets through an exponentiation operation, resulting in a doublet training set. Using both the original training set and the derived doublet datasets, the DBECF is trained. For each input pixel, the DBECF produces multiple classification results, which are then integrated to obtain a more accurate output. To validate the proposed approach, experiments were conducted on three datasets, including multispectral images, hyperspectral images, and time series images. The maximum accuracies achieved by DBECF on the three datasets are 87.80 %, 97.71 %, and 83.51 %, respectively. In comparison to the contrastive methods, the incremental improvements in accuracy are 3.73 %, 7.66 %, and 9.16 %, respectively. The experimental results indicate that no matter using DL or non-deep learning for training, our proposed framework achieves progress on accuracy improvement outperforming classifications using comparative approach that based on single instance. This research provides a new perspective on the combination of DL and ensemble learning, highlighting its important implications and practical value in enhancing classification accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助幸福的杨小夕采纳,获得10
3秒前
韩麒嘉完成签到 ,获得积分10
5秒前
聪慧的凝海完成签到 ,获得积分0
14秒前
14秒前
wwb发布了新的文献求助10
17秒前
phil完成签到 ,获得积分10
17秒前
25秒前
高高菠萝完成签到 ,获得积分10
25秒前
滴滴滴完成签到 ,获得积分10
25秒前
yangsi完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
32秒前
酷炫葵阴发布了新的文献求助10
37秒前
ORANGE完成签到,获得积分10
39秒前
思源应助松松采纳,获得20
43秒前
共享精神应助酷炫葵阴采纳,获得10
45秒前
丝丢皮得完成签到 ,获得积分10
46秒前
47秒前
xfy完成签到,获得积分10
51秒前
阳炎完成签到,获得积分10
53秒前
行云流水完成签到,获得积分10
54秒前
55秒前
冷酷尔琴发布了新的文献求助10
59秒前
青水完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
冷酷尔琴完成签到,获得积分10
1分钟前
onevip完成签到,获得积分0
1分钟前
小莫完成签到 ,获得积分10
1分钟前
1分钟前
theseus完成签到,获得积分10
1分钟前
胡楠完成签到,获得积分10
1分钟前
北国雪未消完成签到 ,获得积分10
1分钟前
李振博完成签到 ,获得积分10
1分钟前
1分钟前
雪妮完成签到 ,获得积分10
1分钟前
松松发布了新的文献求助20
1分钟前
1分钟前
iwsaml完成签到 ,获得积分10
1分钟前
Caden完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022