亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remote sensing image classification using an ensemble framework without multiple classifiers

计算机科学 人工智能 模式识别(心理学) 集成学习 上下文图像分类 遥感 图像(数学) 计算机视觉 机器学习 地理
作者
Peng Dou,Chunlin Huang,Wei Han,Jinliang Hou,Ying Zhang,Jiande Gu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 190-209 被引量:1
标识
DOI:10.1016/j.isprsjprs.2023.12.012
摘要

Recently, ensemble multiple deep learning (DL) classifiers has been reported to be an effective method for improving remote sensing classification accuracy. Although these approaches still follow the conventional pattern of inputting instance features and outputting corresponding classes, they often overlook the intrinsic relationships between pixels beyond their spatial features. As a result, the diversity in the ensemble classification results primarily relies on different DL models. However, training the DL models consumes a significant amount of time, and training multiple networks not only incurs additional time costs but also affects the overall efficiency. To address this, a new approach has been proposed in this paper, which takes advantage of the relationships between pixels and their combinations to generate diverse classification results. It's a novel ensemble classification framework, termed as the Doublet-Based Ensemble Classification Framework (DBECF), which eliminates the need for multiple classifiers. The DBECF starts by utilizing the training set to combine different samples to generate doublets. Then, features are assigned to these doublets through an exponentiation operation, resulting in a doublet training set. Using both the original training set and the derived doublet datasets, the DBECF is trained. For each input pixel, the DBECF produces multiple classification results, which are then integrated to obtain a more accurate output. To validate the proposed approach, experiments were conducted on three datasets, including multispectral images, hyperspectral images, and time series images. The maximum accuracies achieved by DBECF on the three datasets are 87.80 %, 97.71 %, and 83.51 %, respectively. In comparison to the contrastive methods, the incremental improvements in accuracy are 3.73 %, 7.66 %, and 9.16 %, respectively. The experimental results indicate that no matter using DL or non-deep learning for training, our proposed framework achieves progress on accuracy improvement outperforming classifications using comparative approach that based on single instance. This research provides a new perspective on the combination of DL and ensemble learning, highlighting its important implications and practical value in enhancing classification accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱静静应助科研通管家采纳,获得10
1分钟前
风中绝悟完成签到,获得积分20
1分钟前
oleskarabach发布了新的文献求助10
2分钟前
巅峰囚冰完成签到,获得积分10
3分钟前
秉烛游完成签到,获得积分20
3分钟前
3分钟前
3分钟前
liuqizong123发布了新的文献求助10
3分钟前
秉烛游发布了新的文献求助10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
4分钟前
伶俐涵山发布了新的文献求助10
4分钟前
伶俐涵山完成签到,获得积分10
4分钟前
白忘幽完成签到,获得积分10
4分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
5分钟前
JZ发布了新的文献求助10
5分钟前
6分钟前
yuyi发布了新的文献求助10
6分钟前
gszy1975发布了新的文献求助10
6分钟前
爱静静应助科研通管家采纳,获得30
7分钟前
香蕉觅云应助123采纳,获得10
8分钟前
科研人完成签到 ,获得积分10
9分钟前
通科研完成签到 ,获得积分10
9分钟前
爱静静应助科研通管家采纳,获得10
9分钟前
爱静静应助科研通管家采纳,获得10
9分钟前
10分钟前
123发布了新的文献求助10
10分钟前
滴滴滴发布了新的文献求助10
10分钟前
123完成签到 ,获得积分10
10分钟前
爱静静应助科研通管家采纳,获得10
11分钟前
爱静静应助科研通管家采纳,获得10
11分钟前
爱静静应助科研通管家采纳,获得10
11分钟前
11分钟前
TXZ06完成签到,获得积分10
12分钟前
kuoping完成签到,获得积分10
12分钟前
爱静静应助科研通管家采纳,获得10
13分钟前
爱静静应助科研通管家采纳,获得10
13分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805698
关于积分的说明 7865836
捐赠科研通 2463938
什么是DOI,文献DOI怎么找? 1311678
科研通“疑难数据库(出版商)”最低求助积分说明 629722
版权声明 601853