MTD-YOLO: Multi-task deep convolutional neural network for cherry tomato fruit bunch maturity detection

卷积神经网络 任务(项目管理) 成熟度 人工智能 交叉口(航空) 一般化 计算机科学 判别式 机器学习 模式识别(心理学) 工程类 数学 园艺 成熟 数学分析 系统工程 生物 航空航天工程
作者
Wenbai Chen,Mengchen Liu,Chunjiang Zhao,Xingxu Li,Yiqun Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108533-108533 被引量:90
标识
DOI:10.1016/j.compag.2023.108533
摘要

In recent years, the escalating labor costs in agricultural production have emerged as a major concern. The use of inspection robots to achieve automated inspection of fruit and fruit bunches for ripeness not only enhances production efficiency and cost savings, but also simplifies the tasks for workers. To address this issue, an improved YOLOv7-based multi-task deep convolutional neural network (DCNN) detection model, called MTD-YOLOv7, is proposed in this paper. Initially, the dataset labels were expanded to meet the requirements of multi-task classification. Two additional decoders were then added on the basis of YOLOv7 to detect tomato fruit clusters, fruit maturity and cluster maturity. Subsequently, the loss function was designed based on the characteristics of multi-task and the Scale-Sensitive Intersection over Union (SIoU) was used instead of Complete Intersection over Union (CIoU) to improve the model’s recognition accuracy. Finally, to verify the effectiveness of the algorithm, tests were conducted on the cherry tomato dataset, and comparisons were made with common target detection algorithms, classification models, and cascade models. The experimental findings reveal that MTD-YOLOv7 achieved an overall score of 86.6% in multi-task learning, with an average inference time of 4.9 ms (RTX3080). It excels in simultaneous detection of cherry tomato fruits and bunches, fruit maturity, and bunch maturity, offering exceptional precision, rapid detection, and robust generalization capabilities. Its suitability extends to various applications, notably in inspection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
corazon发布了新的文献求助30
刚刚
CR完成签到,获得积分10
1秒前
邱名仕完成签到 ,获得积分10
1秒前
2秒前
花开富贵发布了新的文献求助10
3秒前
Lee关闭了Lee文献求助
4秒前
无极微光应助www采纳,获得20
4秒前
alexlpb完成签到,获得积分0
4秒前
江小白发布了新的文献求助10
5秒前
6秒前
英子发布了新的文献求助10
6秒前
鲁迪完成签到,获得积分10
6秒前
大模型应助cj采纳,获得10
8秒前
科研通AI2S应助xcc采纳,获得10
8秒前
9秒前
蓬蓬完成签到,获得积分10
10秒前
曲沉鱼发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
corazon发布了新的文献求助30
12秒前
无极微光应助yana采纳,获得20
13秒前
Owen应助江风采纳,获得10
13秒前
15秒前
yy完成签到,获得积分10
17秒前
彭于晏应助Serena采纳,获得30
18秒前
学习发布了新的文献求助30
20秒前
yy发布了新的文献求助10
20秒前
鲁迪发布了新的文献求助30
21秒前
21秒前
cwj发布了新的文献求助30
21秒前
丹牛完成签到,获得积分10
22秒前
顺心的惜蕊完成签到 ,获得积分10
22秒前
22秒前
22秒前
金智媛发布了新的文献求助10
23秒前
大模型应助斯文明杰采纳,获得10
23秒前
眼睛大忆梅完成签到,获得积分10
24秒前
转转发布了新的文献求助10
24秒前
corazon发布了新的文献求助10
25秒前
momo发布了新的文献求助10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680081
求助须知:如何正确求助?哪些是违规求助? 4995956
关于积分的说明 15171678
捐赠科研通 4839887
什么是DOI,文献DOI怎么找? 2593687
邀请新用户注册赠送积分活动 1546696
关于科研通互助平台的介绍 1504768