MTD-YOLO: Multi-task deep convolutional neural network for cherry tomato fruit bunch maturity detection

卷积神经网络 任务(项目管理) 成熟度 人工智能 交叉口(航空) 一般化 计算机科学 判别式 机器学习 模式识别(心理学) 工程类 数学 园艺 成熟 数学分析 系统工程 生物 航空航天工程
作者
Wenbai Chen,Mengchen Liu,Chunjiang Zhao,Xingxu Li,Yiqun Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108533-108533 被引量:90
标识
DOI:10.1016/j.compag.2023.108533
摘要

In recent years, the escalating labor costs in agricultural production have emerged as a major concern. The use of inspection robots to achieve automated inspection of fruit and fruit bunches for ripeness not only enhances production efficiency and cost savings, but also simplifies the tasks for workers. To address this issue, an improved YOLOv7-based multi-task deep convolutional neural network (DCNN) detection model, called MTD-YOLOv7, is proposed in this paper. Initially, the dataset labels were expanded to meet the requirements of multi-task classification. Two additional decoders were then added on the basis of YOLOv7 to detect tomato fruit clusters, fruit maturity and cluster maturity. Subsequently, the loss function was designed based on the characteristics of multi-task and the Scale-Sensitive Intersection over Union (SIoU) was used instead of Complete Intersection over Union (CIoU) to improve the model’s recognition accuracy. Finally, to verify the effectiveness of the algorithm, tests were conducted on the cherry tomato dataset, and comparisons were made with common target detection algorithms, classification models, and cascade models. The experimental findings reveal that MTD-YOLOv7 achieved an overall score of 86.6% in multi-task learning, with an average inference time of 4.9 ms (RTX3080). It excels in simultaneous detection of cherry tomato fruits and bunches, fruit maturity, and bunch maturity, offering exceptional precision, rapid detection, and robust generalization capabilities. Its suitability extends to various applications, notably in inspection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辞清完成签到 ,获得积分10
1秒前
懵智发布了新的文献求助10
1秒前
杨佳莉发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
小蜗完成签到 ,获得积分20
2秒前
111222完成签到 ,获得积分20
2秒前
wsq完成签到,获得积分10
3秒前
3秒前
吴兴倩发布了新的文献求助10
3秒前
3秒前
叶子完成签到 ,获得积分20
3秒前
3秒前
4秒前
4秒前
睡个好觉完成签到,获得积分10
4秒前
5秒前
5秒前
平常莞发布了新的文献求助10
5秒前
5秒前
6秒前
michael发布了新的文献求助10
7秒前
Free完成签到,获得积分10
7秒前
Link发布了新的文献求助10
7秒前
7秒前
刘悦发布了新的文献求助10
8秒前
tangyuan发布了新的文献求助10
8秒前
真白白鸭发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
Sucre发布了新的文献求助10
9秒前
水牛喝饱了完成签到 ,获得积分10
9秒前
Hello应助自觉的凡旋采纳,获得10
9秒前
9秒前
10秒前
10秒前
Avvei完成签到,获得积分10
10秒前
10秒前
完美世界应助薄荷采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210