已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MTD-YOLO: Multi-task deep convolutional neural network for cherry tomato fruit bunch maturity detection

卷积神经网络 任务(项目管理) 成熟度 人工智能 交叉口(航空) 一般化 计算机科学 判别式 机器学习 模式识别(心理学) 工程类 数学 园艺 成熟 数学分析 系统工程 生物 航空航天工程
作者
Wenbai Chen,Mengchen Liu,Chunjiang Zhao,Xingxu Li,Yiqun Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108533-108533 被引量:85
标识
DOI:10.1016/j.compag.2023.108533
摘要

In recent years, the escalating labor costs in agricultural production have emerged as a major concern. The use of inspection robots to achieve automated inspection of fruit and fruit bunches for ripeness not only enhances production efficiency and cost savings, but also simplifies the tasks for workers. To address this issue, an improved YOLOv7-based multi-task deep convolutional neural network (DCNN) detection model, called MTD-YOLOv7, is proposed in this paper. Initially, the dataset labels were expanded to meet the requirements of multi-task classification. Two additional decoders were then added on the basis of YOLOv7 to detect tomato fruit clusters, fruit maturity and cluster maturity. Subsequently, the loss function was designed based on the characteristics of multi-task and the Scale-Sensitive Intersection over Union (SIoU) was used instead of Complete Intersection over Union (CIoU) to improve the model’s recognition accuracy. Finally, to verify the effectiveness of the algorithm, tests were conducted on the cherry tomato dataset, and comparisons were made with common target detection algorithms, classification models, and cascade models. The experimental findings reveal that MTD-YOLOv7 achieved an overall score of 86.6% in multi-task learning, with an average inference time of 4.9 ms (RTX3080). It excels in simultaneous detection of cherry tomato fruits and bunches, fruit maturity, and bunch maturity, offering exceptional precision, rapid detection, and robust generalization capabilities. Its suitability extends to various applications, notably in inspection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
xuxingxing完成签到,获得积分10
2秒前
自由梦槐发布了新的文献求助10
4秒前
5秒前
彭于晏应助non平行线采纳,获得10
5秒前
SciGPT应助满意妙梦采纳,获得10
6秒前
8秒前
9秒前
诸葛亮晶晶完成签到,获得积分10
9秒前
10秒前
12秒前
12秒前
科研通AI6应助Hikx采纳,获得10
13秒前
13秒前
WLH完成签到,获得积分10
13秒前
levicho发布了新的文献求助10
16秒前
17秒前
18秒前
20秒前
BowieHuang应助科研通管家采纳,获得20
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
BowieHuang应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
wanci应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
22秒前
kk发布了新的文献求助10
24秒前
一只呆呆完成签到 ,获得积分10
24秒前
火的信仰完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599516
求助须知:如何正确求助?哪些是违规求助? 4685150
关于积分的说明 14837969
捐赠科研通 4668610
什么是DOI,文献DOI怎么找? 2538003
邀请新用户注册赠送积分活动 1505428
关于科研通互助平台的介绍 1470784