已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MTD-YOLO: Multi-task deep convolutional neural network for cherry tomato fruit bunch maturity detection

卷积神经网络 任务(项目管理) 成熟度 人工智能 交叉口(航空) 一般化 计算机科学 判别式 机器学习 模式识别(心理学) 工程类 数学 园艺 成熟 数学分析 系统工程 生物 航空航天工程
作者
Wenbai Chen,Mengchen Liu,Chunjiang Zhao,Xingxu Li,Yiqun Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:216: 108533-108533 被引量:61
标识
DOI:10.1016/j.compag.2023.108533
摘要

In recent years, the escalating labor costs in agricultural production have emerged as a major concern. The use of inspection robots to achieve automated inspection of fruit and fruit bunches for ripeness not only enhances production efficiency and cost savings, but also simplifies the tasks for workers. To address this issue, an improved YOLOv7-based multi-task deep convolutional neural network (DCNN) detection model, called MTD-YOLOv7, is proposed in this paper. Initially, the dataset labels were expanded to meet the requirements of multi-task classification. Two additional decoders were then added on the basis of YOLOv7 to detect tomato fruit clusters, fruit maturity and cluster maturity. Subsequently, the loss function was designed based on the characteristics of multi-task and the Scale-Sensitive Intersection over Union (SIoU) was used instead of Complete Intersection over Union (CIoU) to improve the model’s recognition accuracy. Finally, to verify the effectiveness of the algorithm, tests were conducted on the cherry tomato dataset, and comparisons were made with common target detection algorithms, classification models, and cascade models. The experimental findings reveal that MTD-YOLOv7 achieved an overall score of 86.6% in multi-task learning, with an average inference time of 4.9 ms (RTX3080). It excels in simultaneous detection of cherry tomato fruits and bunches, fruit maturity, and bunch maturity, offering exceptional precision, rapid detection, and robust generalization capabilities. Its suitability extends to various applications, notably in inspection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻哈哈应助yjx采纳,获得10
刚刚
chenwuhao完成签到 ,获得积分10
刚刚
wangxiaobin完成签到 ,获得积分10
3秒前
jiafang完成签到,获得积分10
3秒前
CipherSage应助糊糊采纳,获得30
3秒前
4秒前
uikymh完成签到 ,获得积分0
5秒前
榕小蜂完成签到 ,获得积分10
6秒前
冷酷飞飞完成签到 ,获得积分10
6秒前
jyy完成签到,获得积分10
7秒前
咩咩完成签到 ,获得积分10
7秒前
小爬沟完成签到,获得积分10
8秒前
8秒前
9秒前
Setlla完成签到 ,获得积分10
10秒前
小蘑菇应助犹豫的雁卉采纳,获得10
10秒前
肖的花园完成签到 ,获得积分10
11秒前
12秒前
13秒前
谢大喵发布了新的文献求助10
13秒前
今后应助幸运幸福采纳,获得10
14秒前
动听衬衫发布了新的文献求助10
15秒前
Nefelibata完成签到,获得积分10
16秒前
wangyue完成签到 ,获得积分10
17秒前
Angenstern完成签到 ,获得积分10
17秒前
tong童完成签到 ,获得积分10
19秒前
Fiona发布了新的文献求助10
19秒前
科研通AI5应助动听衬衫采纳,获得10
19秒前
FashionBoy应助门前海棠依旧采纳,获得10
19秒前
慕青应助动听衬衫采纳,获得10
19秒前
lizhongyu发布了新的文献求助10
21秒前
ANLAA完成签到,获得积分20
21秒前
yong完成签到 ,获得积分10
22秒前
生动的煎蛋完成签到 ,获得积分10
24秒前
Limerencia完成签到,获得积分10
24秒前
酷波er应助刘雄丽采纳,获得10
27秒前
宇宇完成签到 ,获得积分10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
豆子应助科研通管家采纳,获得30
28秒前
大模型应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253082
求助须知:如何正确求助?哪些是违规求助? 4416579
关于积分的说明 13750145
捐赠科研通 4288834
什么是DOI,文献DOI怎么找? 2353101
邀请新用户注册赠送积分活动 1349865
关于科研通互助平台的介绍 1309581