MTD-YOLO: Multi-task deep convolutional neural network for cherry tomato fruit bunch maturity detection

卷积神经网络 任务(项目管理) 成熟度 人工智能 交叉口(航空) 一般化 计算机科学 判别式 机器学习 模式识别(心理学) 工程类 数学 园艺 成熟 数学分析 系统工程 生物 航空航天工程
作者
Wenbai Chen,Mengchen Liu,Chunjiang Zhao,Xingxu Li,Yiqun Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:216: 108533-108533 被引量:35
标识
DOI:10.1016/j.compag.2023.108533
摘要

In recent years, the escalating labor costs in agricultural production have emerged as a major concern. The use of inspection robots to achieve automated inspection of fruit and fruit bunches for ripeness not only enhances production efficiency and cost savings, but also simplifies the tasks for workers. To address this issue, an improved YOLOv7-based multi-task deep convolutional neural network (DCNN) detection model, called MTD-YOLOv7, is proposed in this paper. Initially, the dataset labels were expanded to meet the requirements of multi-task classification. Two additional decoders were then added on the basis of YOLOv7 to detect tomato fruit clusters, fruit maturity and cluster maturity. Subsequently, the loss function was designed based on the characteristics of multi-task and the Scale-Sensitive Intersection over Union (SIoU) was used instead of Complete Intersection over Union (CIoU) to improve the model’s recognition accuracy. Finally, to verify the effectiveness of the algorithm, tests were conducted on the cherry tomato dataset, and comparisons were made with common target detection algorithms, classification models, and cascade models. The experimental findings reveal that MTD-YOLOv7 achieved an overall score of 86.6% in multi-task learning, with an average inference time of 4.9 ms (RTX3080). It excels in simultaneous detection of cherry tomato fruits and bunches, fruit maturity, and bunch maturity, offering exceptional precision, rapid detection, and robust generalization capabilities. Its suitability extends to various applications, notably in inspection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东风完成签到,获得积分20
1秒前
23xyke完成签到,获得积分10
1秒前
1秒前
1秒前
QING完成签到 ,获得积分20
2秒前
2秒前
华仔应助amity采纳,获得10
2秒前
Azyyyy完成签到,获得积分10
3秒前
胡建完成签到,获得积分10
4秒前
4秒前
6秒前
bkagyin应助osachon采纳,获得10
6秒前
名天发布了新的文献求助10
6秒前
6秒前
听话的毒娘完成签到,获得积分10
6秒前
7秒前
7秒前
dahuang完成签到,获得积分20
9秒前
10秒前
Kecho发布了新的文献求助20
11秒前
13秒前
dahuang发布了新的文献求助10
13秒前
顾矜应助名天采纳,获得10
14秒前
14秒前
迷你的书蕾完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
归尘发布了新的文献求助10
15秒前
15秒前
李爱国应助kii采纳,获得10
16秒前
zym777发布了新的文献求助10
17秒前
17秒前
nickel完成签到,获得积分10
18秒前
22秒前
mdjsf完成签到,获得积分10
23秒前
人福药业完成签到,获得积分10
25秒前
25秒前
25秒前
Orange应助王世缘采纳,获得10
26秒前
彬彬爷888发布了新的文献求助10
27秒前
masheng发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719