非西汀
类黄酮
化学
肝X受体
甾醇
胆固醇
内科学
药理学
内分泌学
生物化学
生物
医学
核受体
转录因子
抗氧化剂
基因
作者
Yao Guo,Bing Liu,Yaping Geng,Ke Chen,Junyan Li,Xiangju Yin,Shenshen Zhang
标识
DOI:10.1016/j.foodres.2023.113783
摘要
Fisetin, a dietary polyphenol abundantly found in strawberries, exhibits a broad spectrum of health-promoting activities, including antihyperlipidemic effects. This study aimed to investigate the regulatory effect of fisetin on cholesterol elimination through novel transintestinal cholesterol excretion (TICE) pathway. A hypercholesterolemic mouse model and human colon epithelial cancer cell line Caco-2 were utilized to conduct the study. In hypercholesterolemic mice, fisetin (25 mg/kg) treatment reduced serum total cholesterol by 46.48% and significantly decreased lipid accumulation in the liver. Furthermore, fisetin administration led to a substantial increase in the fecal neutral sterol contents, including coprostanol, coprostanone, dihydrocholesterol, and cholesterol. Specifically, these sterol contents increased by approximately 224.20%, 151.40%, 70.40% and 50.72% respectively. The fluorescence intensity of 22-NBD-cholesterol in intestinal perfusion increased by 95.94% in fisetin group (25 mg/kg), indicating that fisetin stimulated TICE. In high cholesterol-induced Caco-2 cells, fisetin at a concentration of 30 μM reduced total cholesterol and free cholesterol by 37.21% and 45.30% respectively, stimulated cholesterol excretion, and inhibited cholesterol accumulation. Additionally, fisetin upregulated the gene and protein expression of cholesterol efflux transporters ABCG5/G8 and ABCB1, while downregulating the cholesterol uptake regulator NPC1L1. Furthermore, fisetin increased LDLR protein expression and decreased PCSK9 expression. Notably, fisetin significantly activated nuclear receptor PPARδ in Caco-2 cells. PPARδ antagonist pretreatment counteracted the regulatory effects of fisetin on TICE regulators, suggesting fisetin lowered cholesterol through enhancing TICE by activation of intestinal PPARδ. Fisetin could be used as functional dietarysupplement for eliminating cholesterol and reducing the incidence of cardiovascular diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI